首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study focuses on the impact of microbial activities on the performance of various long-term operated laboratory-scale permeable reactive barriers. The barriers contained both aquifer and Fe0 compartments and had received either sulfate or iron(III)-EDTA to promote sulfate-reducing and iron(III)-reducing bacteria, respectively. After dismantlement of the compartments after almost 3 years of operation, DNA-based PCR-DGGE analysis revealed the presence of methanogenic, sulfate-reducing, metal-reducing, and denitrifying bacteria within as well as up- and downgradient of the Fe0 matrix. Under all imposed conditions, the main secondary phases were vivianite, siderite, ferrous hydroxy carbonate, and carbonate green rust as found by scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD). Under sulfate-reduction promoting conditions, iron sulfides were formed in addition, resulting in 7 and 10 times higher degradation rates for PCE and TCE, respectively, compared to unreacted iron. These results indicate that the presence of sulfate-reducing bacteria in or around iron barriers and the subsequent formation of iron sulfides might increase the barrier reactivity.  相似文献   

2.
Permeable reactive barriers employing iron as a reactive surface have received extensive attention. A remaining issue, however, relates to their longevity. As an integral part of a long-term column study conducted to examine the influence of inorganic cosolutes on iron reactivity toward chlorinated solvents and nitroaromatic compounds, Master Builder iron grains were characterized via scanning and transmission electron microscopy, electron energy loss spectroscopy (EELS), micro-Raman spectroscopy, and X-ray diffraction. Prior to exposure to carbonate solutions, the iron grains were covered by a surface scale that consisted of fayalite (Fe2SiO4), wüstite (FeO), magnetite (Fe3O4), maghemite (gamma-Fe2O3), and graphite. After 1100 days of exposure to solutions containing carbonate, other inorganic solutes, and organic contaminants, the wüstite, fayalite, and graphite of the original scale partially dissolved, and magnetite and iron carbonate hydroxide (Fe3(OH)2.2CO3) precipitated on top of the scale. Raman results indicate the presence of green rust (e.g., [Fe4(2+)Fe2(3+)(OH)12]-[CO3 x 2H2O]) toward the column outlet after 308 days of operation, although this mineral phase disappears at longer operation times. Grains extracted from a column exposed to a high concentration (20 mM) of sodium bicarbonate were more extensively weathered than those from columns exposed to 2 mM sodium bicarbonate. An iron carbonate hydroxide layer up to 100 microm thick was observed. Even though EELS analysis of iron carbonate hydroxide indicates that this is a redox-active phase, the thickness of this layer is presumed responsible for the previously observed decline in the reactivity of this column relative to low-bicarbonate columns. A silica-containing feed resulted in reduced reactivity toward TCE. Grains from this column had a strong enrichment of silicon in the precipitates, although no distinct silica-containing mineral phases were identified. The substitution of 2 mM calcium carbonate for 2 mM sodium bicarbonate in the feed did not produce a measurable reactivity loss, asthe discrete calcium carbonate precipitates that formed in this system did not severely restrict access to the reactive surface.  相似文献   

3.
We examined the corrosion products of zerovalent iron used in three column tests for removing arsenic from water under dynamic flow conditions. Each column test lasted 3-4 months using columns consisting of a 10.3-cm depth of 50:50 (w:w, Peerless iron:sand) in the middle and a 10.3cm depth of a sediment from Elizabeth City, NC, in both upper and lower portions of the 31-cm-long glass column (2.5 cm in diameter). The feeding solutions were 1 mg of As(V) L(-1) + 1 mg of As(III) L(-1) in 7 mM NaCl + 0.86 mM CaSO4 with or without added phosphate (0.5 or 1 mg of P L(-1)) and silicate (10 or 20 mg of Si L(-1)) at pH 6.5. Iron(II,III) hydroxycarbonate green rust (or simply, carbonate green rust) and magnetite were the major iron corrosion products identified with X-ray diffraction for the separated fractions (5 and 1 min sedimentation and residual). The presence of carbonate green rust was confirmed by scanning electron microscopy (hexagonal morphology) and FTIR-photoacoustic spectroscopy (interlayer carbonate stretching mode at 1352-1365 cm(-1)). X-ray photoelectron spectroscopy investigation revealed the presence of predominantly As(V) at the surface of corroded iron particles despite the fact that the feeding solution in contact with Peerless iron contained more As(III) than As(V) as a result of a preferential uptake of As(V) over As(III) by the Elizabeth City sediment. Extraction of separated corrosion products with 1.0 M HCI showed that from 86 to 96% of the total extractable As (6.9-14.6 g kg(-1)) was in the form of As(V) in agreement with the XPS results. Combined microscopic and macroscopic wet chemistry results suggest that sorbed As(III) was partially oxidized by the carbonate green rust at the early stage of iron corrosion. The column experiments suggest that either carbonate green rust is kinetically favored or is thermodynamically more stable than sulfate green rust in the studied Peerless iron corrosion systems.  相似文献   

4.
Mineralogical examination, using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and optical microscopy, was conducted on the Fe0-bearing reactive materials derived from long-term column experiments undertaken to assess the treatment capacity of Fe0 under different geochemical conditions. The columns received either deionized water or solutions of differing dissolved calcium carbonate concentrations, together either with trichloroethene (TCE) or hexavalent chromium (Cr(VI)). The major reaction product in the columns receiving deionized water was magnetite-maghemite, and for the columns receiving dissolved calcium carbonate, the main products were iron hydroxy carbonate and aragonite. Replacement of Fe0 by reaction products occurred mainly at the edges of the Fe0 particles, and penetrative replacement was focused along cracks and along and around graphitic inclusions. Fibrous or flake-shaped iron hydroxy carbonate mostly replaced the edges of the Fe0 particles. Aragonite had needle-shaped morphology, and some occurred as clusters of crystals. Aragonite was deposited on iron hydroxy carbonate, thus providing at least a partial armoring effect. The mineral was also observed to cement groups of Fe0 particles into compact aggregates. The Cr was present mostly as Cr(III) in Cr(III)-Fe(III) (oxy)hydroxides and in trace amounts in iron hydroxy carbonate.  相似文献   

5.
Kinetics of Cr(VI) reduction by carbonate green rust   总被引:1,自引:0,他引:1  
The kinetics of Cr(VI) reduction to Cr(III) by carbonate green rust were studied for a range of reactant concentrations and pH values. Carbonate green rust, [FeII4FeIII2(OH)12][4H2O x CO3], was synthesized by induced hydrolysis (i.e., coprecipitation) of an Fe(ll)/Fe(III) solution held at a constant pH of 8. An average specific surface area of 47 +/- 7 m2 g(-1) was measured for five separate batches of freeze-dried green rust precipitate. Heterogeneous reduction by Fe(II) associated with the carbonate green rust appears to be the dominant pathway controlling Cr(VI) loss from solution. The apparent stoichiometry of the reaction between ferrous iron associated with green rust ([Fe(II)GR]) and Cr(VI) was slightly higherthan the expected 3:1 ratio, possibly due to the presence of other oxidants, such as oxygen, protons, or interlayer carbonate ions. The rate of Cr(VI) reduction was proportional to the green rust surface area concentration, and psuedo-first-order rate coefficients (kobs) ranging from 1.2 x 10(-3) to 11.2 x 10(-3) s(-1) were determined. The effect of pH was small with a 5-fold decrease in rate with increasing pH (from 5.0 to 9.0). At low Cr(VI) concentrations (<200 microM), the rate of reaction was first order with respect to Cr(VI) concentration, whereas, at high Cr(VI) concentrations, rates appearto deviate from first-order kinetics and approach a constant value. Estimated amounts of surface Fe(II) and total Fe(II) suggest that the deviation from first-order kinetics observed at higher Cr(VI) concentrations and the 50-fold decrease in rate observed upon three sequential exposures to Cr(VI) is due to exhaustion of available Fe(II).  相似文献   

6.
We conducted column studies to investigate the application of a noninvasive electrical method to monitor precipitation in Fe0 columns using (a) Na2SO4 (0.01 M, dissolved oxygen (DO) = 8.8 ppm), and (b) Na2CO3 (0.01 M, DO = 2.3 ppm) solutions. An increase in complex conductivity terms (maximum 40% in sulfate column and 23% in carbonate column) occurred over 25 days. Scanning electron microscopy (SEM) identified mineral surface alteration, with greater changes in the high DO sulfate column relative to the low DO carbonate column. X-ray diffractometry (XRD) identified reduced amounts of hematite/maghemite in both columns, precipitation of goethite/akaganeite in the sulfate column, and precipitation of siderite in the carbonate column. Nitrogen adsorption measurements showed increases in specific surface area of iron minerals (27.5% for sulfate column and 8.2% for carbonate column). As variations in electrolytic conductivity and porosity were minimal, electrical changes are attributed to (1) higher complex interfacial conductivity due to increased surface area and mineralogical alteration and (2) increased electronic conduction due to enhanced electron transfer across the iron-fluid interface. Our results show that electrical measurements are a proxy indicator of Fe0 surface alteration.  相似文献   

7.
Thermogravimetric analysis (TGA) combined with X-ray diffraction (XRD) was used to identify mineral phases and determine corrosion rates of granular iron samples from a 2-yr field column study. Similar to other studies, goethite, magnetite, aragonite, and calcite were found to be the major precipitated minerals, with Fe2(OH)2CO3 and green rust as minor phases. Based on TGA-mass spectrometry (MS) analysis, Fe0 corrodes at rates of 0.5-6.1 mmol kg(-1) d(-1) in the high NO3- (up to 13.5 mM) groundwater; this rate is significantly higher than previously reported. Porosity reduction was 40.6%-45.1% for the inlet sand/Fe0 interface and 7.4%-25.6% for effluent samples of two test columns. Normalized for treatment volumes, porosity loss values are consistent with studies that use high levels of SO4(2-) but are higher than those using low levels of corrosive species. Aqueous mass balance calculations yield corrosion rates similar to the TGA-MS method, providing an alternative to coring and mineralogical analysis. A severely corroded iron sample from the column simulating a 17-yr treatment throughput showed >75% porosity loss. Extensive porosity loss due to high levels of corrosive species in groundwater will have significant impact on long-term performance of permeable reactive barriers.  相似文献   

8.
Long-term column experiments were conducted to evaluate the effects of secondary carbonate minerals on permeability and reactivity of commercial granular iron treating trichloroethene (TCE). The results showed that carbonate precipitates caused a decrease in reactivity of the iron, and spatially and temporally varying reactivity loss resulted in migration of mineral precipitation fronts, as well as profiles of TCE, pH, alkalinity, calcium, and dissolved iron. In the columns receiving solutions of dissolved calcium carbonate, porosity gradually decreased in proportion to the source concentrations, as carbonate minerals accumulated. However, the rate of porosity loss slowed over time because of the declining reactivity of the iron. Thus, secondary minerals are not likely to accumulate to the extent that there is a substantial reduction in hydraulic conductivity. The reactivity of the iron was found to decrease as an exponential function of the carbonate mineral volume fraction. This changing reactivity of iron should be incorporated into predictive models for improved designs of iron permeable reactive barriers (PRBs).  相似文献   

9.
We investigated the long-term effects of ethanol addition on U and Tc mobility in groundwater flowing through intermediate-scale columns packed with uncontaminated sediments. The columns were operated above-ground at a contaminated field site to serve as physical models of an in situ bio-barrierfor U and Tc removal from groundwater. Groundwater containing 4 microM U and 520 pM Tc was pumped through the columns for 20 months. One column received additions of ethanol to stimulate activity of indigenous microorganisms; a second column received no ethanol and served as a control. U(VI) and Tc(VII) removal was sustained for 20 months (approximately 189 pore volumes) in the stimulated column under sulfate- and Fe(III)-reducing conditions. Less apparent microbial activity and only minor removal of U(VI) and Tc(VII) were observed in the control. Sequential sediment extractions and XANES spectra confirmed that U(IV) was present in the stimulated column, although U(IV) was also detected in the control; extremely low concentrations precluded detection of Tc(IV) in any sample. These results provide additional evidence that bio-immobilization may be effective for removing U and Tc from groundwater. However, long-term effectiveness of bio-immobilization may be limited by hydraulic conductivity reductions or depletion of bioavailable Fe(III).  相似文献   

10.
The effect of precipitates on the reactivity of iron metal (Fe0) with 1,1,1-trichloroethane (TCA) was studied in batch systems designed to model groundwaters that contain dissolved carbonate species (i.e., C(IV)). At representative concentrations for high-C(IV) groundwaters (approximately 10(-2) M), the pH in batch reactors containing Fe0 was effectively buffered until most of the aqueous C(IV) precipitated. The precipitate was mainly FeCO3 (siderite) but may also have included some carbonate green rust. Exposure of the Fe0 to dissolved C(IV) accelerated reduction of TCA, and the products formed under these conditions consisted mainly of ethane and ethene, with minor amounts of several butenes. The kinetics of TCA reduction were first-order when C(IV)-enhanced corrosion predominated but showed mixed-order kinetics (zero- and first-order) in experiments performed with passivated Fe0 (i.e., before the onset of pitting corrosion and after repassivation by precipitation of FeCO3). All these data were described by fitting a Michaelis-Menten-type kinetic model and approximating the first-order rate constant as the ratio of the maximum reaction rate (Vm) and the concentration of TCA at half of the maximum rate (K(1/2)). The decrease in Vm/K(1/2) with increasing C(IV) exposure time was fit to a heuristic model assuming proportionality between changes in TCA reduction rate and changes in surface coverage with FeCO3.  相似文献   

11.
Electron transfer from zerovalent iron (Fe0) to targeted contaminants is affected by initial Fe0 composition, the oxides formed during corrosion, and surrounding electrolytes. We previously observed enhanced metolachlor destruction by Fe0 when iron or aluminum salts were present in the aqueous matrix and Eh/pH conditions favored formation of green rusts. To understand these enhanced destruction rates, we characterized changes in Fe0 composition during treatment of metolachlor with and without iron and aluminum salts. Raman microspectroscopy and X-ray diffraction (XRD) indicated that the iron source was initially coated with a thin layer of magnetite (Fe3O4), maghemite (gamma-Fe2O3), and wüstite (FeO). Time-resolved analysis indicated that akaganeite (beta-FeOOH) was the dominant oxide formed during Fe0 treatment of metolachlor. Goethite (alpha-FeOOH) and some lepidocrocite (gamma-FeOOH) formed when Al2(SO4)3 was present, while goethite and magnetite (Fe3O4) were identified in Fe0 treatments containing FeSO4. Although conditions favoring formation of sulfate green rust (GR(II); Fe6(OH)12SO4) facilitated Fe0-mediated dechlorination of metolachlor, only adsorption was observed when GR(II) was synthesized (without Fe0) in the presence of metolachlor and Eh/pH changed to favor Fe(III)oxyhydroxide or magnetite formation. In contrast, dechlorination occurred when magnetite or natural goethite was amended with Fe(II) (as FeSO4) at pH 8 and continued as long as additional Fe(II) was provided. While metolachlor was not dechlorinated by GR(II) itself during a 48-h incubation, the GR(II) provided a source of Fe(II) and produced magnetite (and other oxide surfaces) that coordinated Fe(II), which then facilitated dechlorination.  相似文献   

12.
Green rusts, ferrous-ferric iron oxides, occur in many anaerobic soils and sediments and are highly reactive, making them important phases impacting the fate and transport of environmental contaminants. Despite their potential importance in environmental settings, reactions involving green rusts remain rather poorly described. Chromate is a widespread contaminant having deleterious impacts on plant and animal health; its fate may in part be controlled by green rust. Here we examine chromate reduction by a series of green rust phases and resolve the reaction kinetics at pH 7. The overall kinetics of the reactions are well described by the expression d[Cr(VI)]/dt = -k[Cr(VI)][GR], and this model was successfully used to predict rates of reaction at varying chromium concentrations. The rates of reduction are controlled by the concentration of ferrous iron, surface area, and chemical structure of the green rust including layer spacing. On a mass basis, green rust (GR) chloride is the most rapid reductant of Cr(VI) followed by GRCO3 and GRSO4, with pseudo-first-order rate coefficients (k(obs)) (with respect to Cr(VI) concentration) ranging from 1.22 x 10(-3) to 3.7 x 10(-2) s(-1). Chromium(III)-substituted magnetite and lepidocrocite were identified as the major oxidation products. The nature of the oxidation products appears to be independent of the anionic class of green rust, but their respective concentrations display a dependence on the initial GR. The mole fraction of Fe(III) in the Cr(x),Fe(1-x)(OH)3 x nH2O reaction product ranged from 17% to 68%, leading to a highly stabilized (low solubility) phase.  相似文献   

13.
Fe(II) present at surfaces of iron-containing minerals can play a significant role in the overall attenuation of reducible contaminants in the subsurface. As the chemical environment, i.e., the type and arrangement of ligands, strongly affects the redox potential of Fe(II), the presence of various mineral sorbents is expected to modulate the reactivity of surficial Fe(II)-species in aqueous systems. In a comparative study we evaluated the reactivity of ferrous iron in aqueous suspensions of siderite (FeCO3), nontronite (ferruginous smectite SWa-1), hematite (alpha-Fe2O3), lepidocrocite (gamma-FeOOH), goethite (alpha-FeOOH), magnetite (Fe3O4), sulfate green rust (Fe(II)4Fe(III)2(OH)12SO4 x 4H2O), pyrite (FeS2), and mackinawite (FeS) under similar conditions (pH 7.2, 25 m2 mineral/L, 1 mM Fe(II)aq, O2 (aq) < 0.1 g/L). Surface-area-normalized pseudo first-order rate constants are reported for the reduction of hexachloroethane and 4-chloronitrobenzene representing two classes of environmentally relevant transformation reactions of pollutants, i.e., dehalogenation and nitroaryl reduction. The reactivities of the different Fe(II) mineral systems varied greatly and systematically both within and between the two data sets obtained with the two probe compounds. As a general trend, surface-area-normalized reaction rates increased in the order Fe(II) + siderite < Fe(II) + iron oxides < Fe(II) + iron sulfides. 4-Chloronitrobenzene was transformed by mineral-bound Fe(II) much more rapidly than hexachloroethane, except for suspensions of hematite, pyrite, and nontronite. The results demonstrate that abiotic reactions with surface-bound Fe(II) may affect or even dominate the long-term behavior of reducible pollutants in the subsurface, particularly in the presence of Fe(III) bearing minerals. As such reactions can be dominated by specific interactions of the oxidant with the surface, care must be taken in extrapolating reactivity data of surface-bound Fe(II) between different compound classes.  相似文献   

14.
Both surface treatments, H2-reducing pretreatment at 400 degrees C and the deposition of copper as a catalyst, were attempted to enhance the removal of nitrate (40 (mg N) L(-1)) using zerovalent iron in a HEPES buffered solution at a pH of between 6.5 and 7.5. After the iron surface was pretreated with hydrogen gas, the removal of the passive oxide layers that covered the iron was indicated by the decline in the oxygen fraction (energy dispersive X-ray analysis) and the overlap of the cyclic polarization curves. The reaction rate was doubled, and the lag of the early period disappeared. Then, the deposition of copper onto freshly pretreated iron promoted nitrate degradation more effectively than that onto a nonpretreated iron surface, because of the high dispersion and small size of the copper particles. An optimum of 0.25-0.5% (w/w) Cu/Fe accelerated the rate by more than six times that of the nonpretreated iron. The aged 0.5% (w/w) Cu/Fe with continual dipping in nitrate solution for 20 days completely restored its reactivity by a regeneration process with H2 reduction. Hence, these two iron surface treatments considerably promoted the removal of nitrate from near-neutral water; the reactivity of Cu/Fe was effectively recovered.  相似文献   

15.
The speciation of As and Fe was studied during the oxidation of Fe(II)-As(III) solutions by combining XAS analysis at both the Fe and As K-edges. Fe(II) and As(III) were first hydrolyzed to pH 7 under anoxic conditions; the precipitate was then allowed to oxidize in ambient air for 33 h under vigorous stirring. EXAFS analysis at the As K-edge shows clear evidence of formation of inner-sphere complexes between As(III) and Fe(II), i.e., before any oxidation. Inner-sphere complexes were also observed when Fe became sufficiently oxidized, in the form of edge-sharing and double-corner linkages between AsIIIO3 pyramids and FeIIIO6 octahedra. XAS analyses at the Fe K-edge reveal that the presence of As(III) in the solution limits the polymerization of Fe(II) and the formation of green rust and inhibits the formation of goethite and lepidocrocite. Indeed, As(III) accelerates the Fe(II) oxidation kinetics and leads to the formation of nanosized Fe-As subunits of amorphous aggregates. These observations, rather than a presumed weaker affinity of As(III) for iron oxyhydroxides, might explain why As(III) is more difficult to remove than As(V) by aerating reducing groundwater.  相似文献   

16.
Experiments were conducted to examine the role of humic acid and quinone model compounds in bromate reduction by Fe(0). The reactivity of Fe(0) toward bromate declined by a factor of 1.3-2.0 in the presence of humic acid. Evidence was obtained that the quick complexation of humic acid with iron species and its adsorption passivated the iron surface and decreased the rate of bromate reduction by Fe(0). On the other hand, in the long run, the reduced functional groups present in humic acid were observed to regenerate Fe(II) and reduce bromate abiotically. Compared with the case of humic acid only, the simultaneous presence of Fe(II) and humic acid significantly increased the bromate removal rate. Fe(III)/Fe(II) acted as a catalyst in the oxidation of humic acid by bromate. Anthraquinone-2,6-disulfonate (AQDS) and lawsone did not cause any significant effect on the bromate reduction rate by Fe(0). However, the redox reactivity of lawsone in the presence of Fe(III) was evident, while AQDS did not show any under the tested conditions. The difference was attributable to the presence/ absence of reducing functional groups in the model compounds. The electron spin resonance further demonstrated that the redox functional groups in humic acid are most likely quinone-phenol moieties. Although the bromate reduction rate by regenerated Fe(II) is a few times slower than that by Fe(0), the reactive Fe(II) can be, alternatively, reductively formed to maintain iron surface activation and bromate reduction to prolong the lifetime of the zerovalent iron.  相似文献   

17.
Acid mine drainage (AMD), which is caused by the biological oxidation of sulfidic materials, frequently contains arsenic in the form of arsenite, As(III), and/or arsenate, As(V), along with much higher concentrations of dissolved iron. The present work is directed toward the removal of arsenic from synthetic AMD by raising the pH of the solution by electrochemical reduction of H+ to elemental hydrogen and coprecipitation of arsenic with iron(III) hydroxide, following aeration of the catholyte. Electrolysis was carried out at constant current using two-compartment cells separated with a cation exchange membrane. Four different AMD model systems were studied: Fe(III)/As(V), Fe(III)/As(III), Fe(II)/As(V), and Fe(II)/As(III) with the initial concentrations for Fe(III) 260 mg/L, Fe(II) 300 mg/L, As(V), and As(III) 8 mg/L. Essentially quantitative removal of arsenic and iron was achieved in all four systems, and the results were independent of whether the pH was adjusted electrochemically or by the addition of NaOH. Current efficiencies were approximately 85% when the pH of the effluent was 4-7. Residual concentrations of arsenic were close to the drinking water standard proposed by the World Health Organization (10 microg/L), far below the mine waste effluent standard (500 microg/L).  相似文献   

18.
In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe M?ssbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe M?ssbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.  相似文献   

19.
Nanoscale zerovalent iron (NZVI) was aged over 30 days in suspension (2 g/L) with different anions (chloride, perchlorate, sulfate, carbonate, nitrate), anion concentrations (5, 25, 100 mN), and pH (7, 8). During aging, suspension samples were reacted periodically with 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA) and Cr(VI) to determine the time scales and primary mode of NZVI reactivity loss. Rate constants for 1,1,1,2-TeCA reduction in Cl(-), SO(4)(2-), and ClO(4)(-) suspensions decreased by 95% over 1 month but were generally equivalent to one another, invariant of concentration and independent of pH. In contrast, longevity toward 1,1,1,2-TeCA depended upon NO(3)(-) and HCO(3)(-) concentration, with complete reactivity loss over 1 and 14 days, respectively, in 25 mN suspensions. X-ray diffraction suggests that reactivity loss toward 1,1,1,2-TeCA in most systems results from Fe(0) conversion into magnetite, whereas iron carbonate hydroxide formation limits reactivity in HCO(3)(-) suspensions. Markedly different trends in Cr(VI) removal capacity (mg Cr/g NZVI) were observed during aging, typically exhibiting greater longevity and a pronounced pH-dependence. Notably, a strong linear correlation exists between Cr(VI) removal capacities and rates of Fe(II) production measured in the absence of Cr(VI). While Fe(0) availability dictates longevity toward 1,1,1,2-TeCA, this correlation suggests surface-associated Fe(II) species are primarily responsible for Cr(VI) reduction.  相似文献   

20.
The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. M?ssbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号