首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze the initiation and propagation of a crack from a point on the surface of a circular notch-tip in an impact loaded prenotched plate. The material of the plate is assumed to exhibit strain hardening, strain-rate hardening, and softening due to the rise in temperature and porosity. The degradation of material parameters due to the evolution of damage in the form of porosity is considered. Brittle failure is assumed to initiate when the maximum tensile principal stress at a point reaches a critical level. Ductile failure is assumed to ensue when the effective plastic strain reaches a critical value. A crack initiating from the node where a failure first occurs is taken to propagate to the adjacent node that has the highest value of the failure parameter (the maximum tensile principal stress or the effective plastic strain). The opening and propagation of a crack are modeled by the node release technique. Surface tractions and the normal component of the heat flux are taken to be null on the newly created crack surfaces. For the brittle failure, the stress field around the crack tip resembles that in mode-I deformations of a prenotched plate loaded in tension. The distribution of the effective plastic strain in a small region around the surface of the notch-tip is not affected much by the initiation of a ductile fracture there except for a shift in the location of the point where the effective plastic strain is maximum. The initiation of the ductile failure is delayed when a crack is opened at the point where the brittle failure ensues.  相似文献   

2.
This paper presents the development of a finite element analysis based on an anisotropic model of continuum damage mechanics theory proposed recently by the authors for ductile fracture under non-proportional loading. The condition of non-proportional loading is formulated by introducing a dynamic co-ordinate system of principal damage allowing the principal direction of damage during the loading to rotate accordingly. The finite element analysis developed under non-proportional loading is applied to predict the crack initiation load of a centre-cracked plate under uniform loading. The predicted load agrees satisfactorily with those determined experimentally with centre-cracked thin plates made of aluminium alloy 2024-T3. The analysis also reveals under non-proportional loading the hysteresis effect of the principal directions of damage and stress. In addition, the influence of varying anisotropic damage coefficients on the crack initiation load and the crack tip displacement profile is also examined. The larger the degree of the anisotropy, the higher the crack initiation load. The magnitude of the crack tip displacement profile is found to be proportional to the degree of material anisotropy.  相似文献   

3.
Based on the crack tip stress and strain fields, the linear and the non-linear fracture mechanics have been developed. Their applications to the studies of fracture initiation and stable crack growth may differ because of the difference in the basic postulates of various fracture theories. The correct postulates will help to develop non-linear fracture mechanics for valid fracture toughness measurements and to extend fracture mechanics beyond the realms of K and J.The basic postulates of the linear elastic fracture mechanics are examined. The theory of global energy balance, the theory of sharp notch, and the theory of the characterization of crack tip stress and strain fields by K are analyzed. Fracture initiation and stable crack growth are local fracture phenomena. Therefore the global energy balance theory for crack initiation and stable crack growth without the study of the detailed fracture processes is fortuitous. The capability of the stress intensity factor to characterize the crack tip stress and strain fields for the localized fracture process is the basis for the validity of the linear elastic fracture mechanics.The concept of the characteristic crack tip field can be directly extended to the non-linear fracture mechanics. The fracture toughness and the tearing modulus of a tough material are measures of the fracture ductility of the material. The possibility to extend fracture mechanics beyond the realms of K and J are discussed.  相似文献   

4.
In this paper we review the peridynamic model for brittle fracture and use it to investigate crack branching in brittle homogeneous and isotropic materials. The peridynamic simulations offer a possible explanation for the generation of dynamic instabilities in dynamic brittle crack growth and crack branching. We focus on two systems, glass and homalite, often used in crack branching experiments. After a brief review of theoretical and computational models on crack branching, we discuss the peridynamic model for dynamic fracture in linear elastic–brittle materials. Three loading types are used to investigate the role of stress waves interactions on crack propagation and branching. We analyze the influence of sample geometry on branching. Simulation results are compared with experimental ones in terms of crack patterns, propagation speed at branching and branching angles. The peridynamic results indicate that as stress intensity around the crack tip increases, stress waves pile-up against the material directly in front of the crack tip that moves against the advancing crack; this process “deflects” the strain energy away from the symmetry line and into the crack surfaces creating damage away from the crack line. This damage “migration”, seen as roughness on the crack surface in experiments, modifies, in turn, the strain energy landscape around the crack tip and leads to preferential crack growth directions that branch from the original crack line. We argue that nonlocality of damage growth is one key feature in modeling of the crack branching phenomenon in brittle fracture. The results show that, at least to first order, no ingredients beyond linear elasticity and a capable damage model are necessary to explain/predict crack branching in brittle homogeneous and isotropic materials.  相似文献   

5.
The micromechanism of crack propagation in steel is described and analyzed in continuum terms and related to the macroscopic fracture behavior. It is proposed that propagation of cleavage microcracks through favorably oriented grains ahead of the main crack tip is the principal weakening mode in brittle fracture. This easy cleavage process proceeds in the Griffith manner and follows a continuous, multiply connected, nearly planar path with a very irregular front which spreads both forward and laterally and leaves behind disconnected links which span the prospective fracture surface. A discrete crack zone which extends over many grains thus exists at the tip of a running brittle crack. Final separation of the links is preceeded by plastic straining within the crack zone and occurs gradually with the increasing crack opening displacement. It is suggested that in low stress fracture, straining of the links is the only deformation mode. However, it is recognized that under certain conditions plastic enclaves may adjoin the crack zone. This deformation mode is associated with high stress fracture, energy transition and eventually with crack arrest.

Energy dissipation resulting from the two deformation mechanisms is related to crack velocity, applied load and temperature and the crack velocity in a given material is expressed as a function of the external conditions. Fracture initiation and crack arrest are then discussed in terms of the conditions which are necessary to maintain the propagation process. Finally, the dimensions of a small scale crack tip zone for a steady state, plane strain crack are evaluated as functions of material properties and the elastic stress intensity factor.

The microstructural aspects of brittle fracture will be discussed in a separate Part 2 [1].  相似文献   


6.
In a domain of reasonable accuracy around the crack tip, asymptotic equations can provide closed form expressions that can be used in formulation of crack problem. In some studies on shape memory alloys (SMAs), although the pseudoelastic behavior results in a nonlinear stress–strain relation, stress distribution in the vicinity of the crack tip is evaluated using asymptotic equations of linear elastic fracture mechanics (LEFM). In pseudoelastic (SMAs), upon loading, stress increases around the crack tip and martensitic phase transformation occurs in early stages. In this paper, using the similarity in the loading paths of a pseudoelastic SMA and a strain hardening material, the stress–strain relation is represented by nonlinear Ramberg–Osgood equation which is originally proposed for strain hardening materials, and the stress distribution around the crack tip of a pseudoelastic SMA plate is reworked using the Hutchinson, Rice and Rosengren (HRR) solution, first studied by Hutchinson. The size of the transformation region around the crack tip is calculated in closed form using a thermodynamic force that governs the martensitic transformation together with the asymptotic equations of HRR. A UMAT is written to separately describe the thermo-mechanical behavior of pseudoelastic SMAs. The results of the present study are compared to the results of LEFM, computational results from ABAQUS, and experimental results for the case of an edge cracked NiTi plate. Both set of asymptotic equations are shown to have different dominant zones around the crack tip with HRR equations representing the martensitic transformation zone more accurately.  相似文献   

7.
The new model of stress triaxiality, subjected to plane strain condition under mixed‐mode (I + II) loading, at the yield loci of the crack tip, has been formulated using unified strength theory. It evaluates critical values of triaxiality for various convex and non‐convex failure criteria, unlike the existing model. It shows the effects of Poisson's ratio and intermediate principal stress for materials whose strength in tension and compression is either equal or unequal. Further, on this basis, the crack initiation angles are predicted for various crack inclinations and compared with those obtained from other fracture criteria. The plastic zone shapes supplement the results. Critical yield stress factor, a significant parameter at the crack tip got lowered as the difference among the three principal stresses reduced to a minimum. The crack initiation angles obtained from the model showed good agreement with those obtained from G‐, S‐, and T‐criterion.  相似文献   

8.
In this paper the ‘damage work’ proposed by Chaouadi et al. is used to formulate an energy crack initiation criterion to describe ductile crack initiation. The traditional assessment of structural integrity by the J-integral, a property of elastic-plastic fracture mechanics is compared. Two free-cutting and one structural steel are investigated. The measured values for the critical damage work density at initiation Wdi are compared with values for copper and RPV steel. As the fracture mechanical approach is limited to sharp cracks in the material (high-constraint stress state) the present damage mechanics approach is regarded as important as a more general concept closer to reality. While old void growth models of damage mechanics cannot formulate a simple criterion for crack initiation the applied damage work reaches a constant value at initiation Wdi which is independent of the stress state during the deformation process. We recommend Wdi as a material property of toughness for testing and engineering purposes.  相似文献   

9.
In this paper, the effects of T‐stress on steady, dynamic crack growth in an elastic–plastic material are examined using a modified boundary layer formulation. The analyses are carried out under mode I, plane strain conditions by employing a special finite element procedure based on moving crack tip coordinates. The material is assumed to obey the J2 flow theory of plasticity with isotropic power law hardening. The results show that the crack opening profile as well as the opening stress at a finite distance from the tip are strongly affected by the magnitude and sign of the T‐stress at any given crack speed. Further, it is found that the fracture toughness predicted by the analyses enhances significantly with negative T‐stress for both ductile and cleavage mode of crack growth.  相似文献   

10.
The French A16 guide developed at CEA Saclay proposes a methodology to estimate the stress and strain in the vicinity of the crack tip and a criterion to assess crack initiation by using these local parameters. A worked example for a CT specimen is developed and the results are compared with finite element analysis. Both calculation methods have their specific material behaviour models. In this text, the finite element constitutive model is presented. The material coefficients needed for the A16 guide are then determined by means of numerical simulation on smooth specimens.  相似文献   

11.
陈新  彭曦  李东威  吕文涛 《工程力学》2013,30(10):227-235
该文引入Rankine最大拉应力准则和Mohr-coulomb剪切破坏准则分别作为岩石基质的拉伸和压剪破裂判据,分析了单轴压缩下裂隙岩体的起裂机制。根据含单个椭圆裂隙的无限域岩体在单轴压缩下的应力理论解,编制了Matlab程序,计算分析了不同短轴与长轴比k和倾角α(加载轴与裂隙长轴间的夹角)下的岩石基质应力集中系数、两种不同起裂机制的破裂函数值、开裂位置和开裂临界荷载。对多裂隙岩体,采用ABAQUS有限元软件进行了应力计算和起裂机制分析。计算结果表明:1)与单裂隙岩体相比,多裂隙岩体的岩石基质应力集中系数略大、起裂临界荷载略小,但起裂位置相同;2)随着裂隙倾角α的增大,岩石基质的主拉应力集中区由裂隙端部附近很小的区域逐渐变为裂隙中部的大面积区域,而主压应力集中区则反之;3)存在临界裂隙倾角α0,其值在45°附近。当裂隙倾角0<α≤α0时,在裂隙端部同时有拉应力和压剪应力集中,拉破裂临界荷载小于压剪破裂临界荷载,但随着裂隙轴比的增大二者逐渐相等,表明岩体受拉破裂和压剪破裂共同影响越来越明显;当α0<α≤90°时,尽管拉破裂临界荷载大于压剪破裂临界荷载,但首先发生在裂隙端部的压剪破裂区范围很小,而随后将在裂隙中部或端部发生大量的拉伸破裂。上述分析结果与实验现象较为吻合。  相似文献   

12.
Two-dimensional, plane strain, finite element analyses of strength-mismatched welded joints have been performed using the modified boundary layer formulation. The welds were idealized as two-material joints with the material interface running parallel to the crack, which was embedded in the weld material. The Rousselier ductile damage model was employed within the weld material to simulate crack extension due to the growth and coalescence of microvoids. By analysing models with different levels of material mismatching, weld dimensions and applied T -stress levels, it was possible to analyse the effects of crack tip constraint due to both material mismatching and specimen geometry on the fracture resistance of the weld material.
The results show that material strength overmatching (where the weld material is stronger than the base material) reduces the level of constraint ahead of the crack, which can increase the resistance to fracture of the weld material. Conversely, material strength undermatching increases crack tip constraint, reducing the fracture resistance of the joint. By employing estimates for the crack tip constraint levels, Q M , based on the applied load, level of material mismatching and weld region thickness, it has been possible to 'order' the J– resistance curves of overmatched joints by generating a family of J–Q M loci which describe the effects of constraint on the fracture resistance of the weld material. However, it is shown that the Q M-stress parameter is not capable of describing the effect of material strength undermatching on the fracture resistance of a joint, which can be much lower than that obtained from a high-constraint homogeneous specimen of weld material.  相似文献   

13.
Continuum Damage Mechanics (CDM) approach is used to predict crack initiation life and Fracture Mechanics approach predicts crack growth life. Strain controlled fatigue life of a ferrous alloy, EN 19 steel, has been determined using CDM and Fracture Mechanics approach. By combining these two approaches, life could be predicted with damage value in the material. All inputs required for the models have been determined by conducting monotonic, cyclic and fracture tests. Predicted life is also compared by conducting strain controlled fatigue tests. Predicted life in the strain amplitude range of 0.3–0.7% (fatigue life range of 102–105), compares well with the experimental results. All tests have been conducted at specimen level, stress ratio of −1 and at room temperature. The variation of crack initiation and crack propagation life with strain amplitude shows that maximum life is consumed by crack growth process at higher strain amplitude and at lower strain amplitudes, maximum life is spent for crack initiation process.  相似文献   

14.
The Boundary Element Method (BEM) incorporating the Embedded Cell Approach (ECA) has been used to analyse the effects of constituent material properties, fibre spatial distribution and microcrack damage on the localised behaviour of transversely fractured, unidirectional fibre-reinforced composites. Three specific composites, i.e., glass fibre reinforced polyester, carbon fibre reinforced epoxy and a glass-carbon hybrid, are considered. The geometrical structures examined were perfectly periodic, uniformly spaced fibre arrangements in square and hexagonal embedded cells. In addition, numerical simulations were also conducted using embedded cells containing randomly distributed fibres. The models involve both elastic fibres and matrix, with the interfaces between the different phases being fully bonded. The results indicate that the constituent material properties (two phase composite) and spatial distribution have a significant effect on the localised stress distributions around the primary crack tip. However, the strain energy release rate associated with crack propagation is predominantly influenced by the material composition. The three-phase hybrid composite exhibited an apparent intermediate fracture toughness value, compared to the all-glass and all-carbon models. Furthermore, the strain energy release rate for the macrocrack lowers as it enters a zone of localised damage (microcracking). The presence of microcracks relaxes the stress field, which can result in a significant reduction in the energetics of the primary crack.  相似文献   

15.
Abstract: An experimental study was conducted to evaluate the tear energy of unfilled and 25 phr carbon black‐filled natural rubber with varying loading rates. The variation of the tear energy with far‐field sample strain rate between 0.01 to 10 s?1 was found to be different from tensile strip and pure shear specimens. Above a sample strain rate of 10 s?1, the tear energy calculated from either specimen was comparable. The differences in the tear energy derived from the tensile strip and pure shear specimens were attributed to differences in the local crack tip stress state and strengthening of the material due to strain‐induced crystallisation. Both of these factors resulted in crack speeds 3–4 times higher in the pure shear specimen as compared to the tensile strip specimen. Finite element analysis (FEA) indicated that fracture would initiate at the crack tip either when the strain energy density approached the material toughness or when the maximum principal stress and strain approached the material tensile strength and fracture strain, respectively. It was concluded that these parameters would be better than the tear energy in predicting fracture of natural rubber under dynamic loading.  相似文献   

16.
The dynamic fracture response of a long beam of brittle elastic material under tensile loading is studied. If the magnitude of the applied loading is increased to a critical value, a crack is assumed to propagate across the beam cross section. As an extension of previous work, an induced bending moment generated during fracture is incorporated into the analysis and this improved formulation is presented. The crack length, crack tip speed, axial force and bending moment on the fracturing section are determined as functions of time after crack initiation. It is found that the bending moment has a significant effect on the fracture process in that it tends to retard fracture and causes a drastic change in the slope of the loading curve for large crack depths. Finally, by appropriate change of the elastic modulus, the results may be applied to plane strain fracture of a plate in pure tensile loading.  相似文献   

17.
The author considers some peculiarities of fatigue crack growth in metals at the stages of its initiation and initial development, and stable and unstable growth that precedes final fracture. It is shown that at the stage of initial growth of fatigue cracks, the stress state, nonlocalized fatigue damage that precedes initiation of the main fatigue crack, residual surface stresses, surface manufacturing and in-service defects, and contact interactions are the factors that determine the crack paths. Stable growth of a fatigue crack is primarily determined by the stress-strain state of a structure as a whole and by the stress-strain state at the crack tip with allowance for its variation due to crack propagation, which is evaluated by the criteria of fracture mechanics. The author also studied peculiarities of fatigue crack development in compressor blades of marine gas turbines. It is shown that for embrittled steels, when fatigue cracks develop under plane strain conditions, final fracture occurs at very small crack sizes. In this case, the characteristics of fatigue fracture toughness are appreciably lower than the static values. The paper also considers peculiarities of unstable fatigue crack propagation.  相似文献   

18.
Mechanistic investigations of damage evolution before crack initiation in an amorphous polymer show that damage consists of a core of highly dense crazing and a peripheral less dense zone of crazing. Damage characterization is carried out at consecutive configurations of the damage zone. Analysis of the kinematics of damage at different times involves comparisons of the inertia moments of damage distributions. The results indicate that damage evolution between consecutive configurations can be approximated by a linear transformation of the space variables. Thus, the process of damage growth can be described by translation and deformation of the damage zone. The growth rates of the damage zone movements decrease until crack initiation. In all cases, the average densities exhibit a damping type behavior with the number of cycles. The crack initiates within a core zone immediately ahead of the stress concentrator. The experimental results suggest that damage density within the core zone is independent of the loading conditions considered herein. This value is approximately equal to the damage density around the crack tip during slow crack propagation. The crack length at initiation is found to increase exponentially with the stress level. A simple decaying exponential relationship relates the crack initiation times and the applied stress level. This result is consistent with the fracture models based on absolute reaction theories.  相似文献   

19.
The authors studied the influence of the conditions for growing an initial fatigue crack on the scatter of fracture toughness data determined under static loading. It was found that the values of static fracture toughness for cyclically softening steels at temperatures below the brittle-to-ductile transition are essentially dependent on the degree of the material fatigue damage in the vicinity of the crack tip during the final stage of crack initiation. A method is proposed for evaluating the fracture toughness under static loading which makes it possible to take into account the material damage in the vicinity of the crack tip.  相似文献   

20.
Micromechanical modelling of void nucleation in ductile metals indicates that strain required for damage initiation reduces exponentially with increasing stress triaxiality. This feature has been incorporated in a continuum damage mechanics (CDM) model, providing a phenomenological relationship for the damage threshold strain dependence on the stress triaxiality. The main consequences of this model modification are that the failure locus is predicted to change as function of stress triaxiality sensitivity of the material damage threshold strain and that high triaxial fracture strain is expected to be even lower than the threshold strain at which the damage processes initiate at triaxiality as low as 1/3. The proposed damage model formulation has been used to predict ductile fracture in unnotched and notched bars in tension for two commercially pure α‐iron grades (Swedish and ARMCO iron). Finally, the model has been validated, predicting spall fracture in a plate‐impact experiment and confirming the capability to capture the effect of the stress state on material fracture ductility at very high stress triaxiality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号