首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cross-ply polymer laminates reinforced by ultra-high molecular weight polyethylene (UHWMPE) fibers and tapes have been subjected to quasi-static indentation by a flat-bottomed, circular cross section punch and their penetration resistance and failure mechanisms investigated. Three fiber- and two tape-reinforced grades progressively failed during indentation via a series of unstable failure events accompanied by substantial load drops. This resulted in a ‘saw-tooth’ load versus indentation depth profile as the load increased with indentation depth after each failure event. The penetration behavior scaled with the ratio of the thickness of the remaining laminate to the diameter of the punch, and the indentation pressure scaled with the through thickness compressive strength. Failure occurred by ply rupture. The results are consistent with penetration governed by an indirect tension failure mechanism, and with experimental reports that tape-reinforced materials have a similar ballistic resistance to the higher tensile strength fiber-reinforced grades in rear-supported test conditions.  相似文献   

2.
This study prepared inter/intra-ply hybrid composites reinforced with sandwich-structure recycled Kevlar nonwoven/glass woven compound fabric. Negative-depth needle punching and thermal bonding were applied to strengthen the structure with two compound cover plies and a fluffy cushioning center ply. The effects of center ply areal density, needle punching depth, and fiber blending ratio on the static and dynamic impact resistance behaviors of the composites were investigated. The results indicated that areal density significantly influenced the static and dynamic impact behaviors, which were both enhanced by the promotion of thermal-bonding points. As the needle punching deepened, the static and dynamic puncture resistances represented opposite tendencies because of different failure mechanisms. Static friction was the dominant factor for static puncture resistance, whereas kinetic friction was the dominant factor for dynamic puncture resistance. A similar phenomenon was observed when fiber blending ratio was varied. In terms of the non-penetrating dynamic cushioning test, areal density was the most distinct influence factor on cushioning behavior and the hybrid composites sample with an areal density of 700 g/m2 could eliminate up to 66.5% of the incident force. Therefore, the inter/intra-ply hybrid composites showed high impact resistance and excellent dynamic cushioning property.  相似文献   

3.
The results of a large experimental campaign concerning the mechanical behavior of SiC/SiC composites tubes under uniaxial and biaxial loadings (both tension–torsion and tension-internal pressure) are presented. The anisotropy of the elastic moduli, damage onset and failure properties has been characterized. The orientation of matrix cracking was analyzed, based on surface observations, and its connection to the macroscopic stress–strain response provides important insight into the underlying deformation mechanisms. However, the macroscopic behavior still exhibits unexplained features, and mechanisms specific to the textile architecture are proposed.  相似文献   

4.
Samples of original and thermally treated bentonite at 650 °C 4 h were characterized with chemical analysis, X-ray diffraction, thermal analysis, mercury porosimetry, differential scanning calorimetry, physisorption measurement and scanning electron microscopy. These consequence of the heating have been found. The chemical analysis shows high silica and alumina contents and small quantities of Fe+3, Ca+2 and Mg+2. XRD analysis shown the presence the main minerals are montmorillonite and opal CT, in the subordinate quantity illite. The result of the heating was the decomposition of clay minerals. Further, the increase in silica and alumina contents. A significant changes in the original pore structure have been found. The changes were characterized by the expressed increase in the content of total porosity caused by the achieved occurence of the pores covering pore radius area over 2000 nm. This effect represents the increased openness of the pore structure which may have the significant role in the intensity of alkali-activation process as a factor contributing to the increase of the contact of alkali activator solution with the activated solid. As a possible consequence of the increased openness could be the acceleration of alkali-activation process resulting, for example, in the acceleration of the strength development of binding system based on the thermally treated bentonite.  相似文献   

5.
In the present work, the chemo-rheology of an industrial “orthophthalic” polyester system specifically prepared for a pultrusion process is characterized. The curing behaviour is first characterized using the differential scanning calorimetry (DSC). Isothermal and dynamic scans are performed to develop a cure kinetics model which accurately predicts the cure rate evolutions and describes the curing behaviour of the resin over a wide range of different processing conditions. The viscosity of the resin is subsequently obtained from rheological experiments using a rheometer. Based on this, a resin viscosity model as a function of temperature and degree of cure is developed and predicts the measured viscosity correctly. The evolution of the storage and loss moduli are also measured as a function of time using the rheometer which provides an information about the curing as well as the gelation. The temperature- and cure-dependent elastic modulus of the resin system is determined using a dynamic mechanical analyzer (DMA) in tension mode. A cure hardening and thermal softening model is developed and a least squares non-linear regression analysis is performed. The variation in elastic modulus with temperature and phase transition is captured for a fully cured resin sample.  相似文献   

6.
Natural fiber reinforced composites have attracted interest due to their numerous advantages such as biodegradability, dermal non-toxicity and with promising mechanical strength. The desire to mitigate climate change due to greenhouse gas emissions, biodegradable resins are explored as the best forms of polymers for composites apart from their synthetic counterparts which are non-renewable. In this study biodegradable bark cloth reinforced green epoxy composites are developed with view of application to automotive instrument panels. The optimum curing temperature of green epoxy was shown to be 120 °C. The static properties showed a tensile strength of 33 MPa and flexural strength of 207 MPa. The dynamic mechanical properties, frequency sweep showed excellent fiber-matrix bonding of the alkali treated fabric with the green epoxy polymer with glass transition temperature in the range of 160 °C–180 °C. Treatment of the fabric with alkali positively influenced the mechanical properties of the fabric reinforced biocomposites.  相似文献   

7.
This study evaluates the ballistic impact resistance of soda-lime silicate glass strengthened by ion exchange for application in lightweight and thin bulletproof materials. The maximum flexural strength values of the strengthened glass with thicknesses of 3, 4, 8, and 10 mm were 0.63, 0.68, 0.73, and 0.77 GPa, respectively, values that were 3.5 times higher than that of the parent glass. By laminating polycarbonate and multilayer defense film with the strengthened glass, we achieved a ballistic limit velocity of 973.8 m/s, which was 16% higher than the standard. Also, the transmittance satisfied the standard for bulletproof windows.  相似文献   

8.
Graphene nanopowder (GNP) and multi-walled carbon nanotube (MWCNT)-filled epoxy thin-film composites were fabricated using ultrasonication and the spin coating technique. The effect of sonication time (10, 20 and 30 min) and GNP loading (0.05–1 vol%) on the tensile and electrical properties of GNP/epoxy thin-film composites was investigated. The addition of GNP decreased the material’s tensile strength and modulus. However, among the tested samples, the GNP/epoxy composites produced using 20 min of sonication time had a slightly higher tensile strength and modulus, with a lower electrical percolation threshold volume fraction. The effect of sonication time was supported by morphological analysis, which showed an improvement in GNP dispersion with increased sonication time. However, GNP deformation was observed after a long sonication time. The GNP/epoxy composites at different filler loadings showed higher electrical properties but slightly lower tensile properties compared with the MWCNT/epoxy composites fabricated using 20 min of sonication time.  相似文献   

9.
To get a strong, stiff and weight efficient cylindrical shell, a novel carbon fiber reinforced corrugated lattice truss-core sandwich cylinder (LTSC) was designed and fabricated. The core is made up of orthogonal corrugated trusses and manufactured by mould pressing method. The LTSC is fabricated by filament winding and co-curing method. The face sheets have layups of [0°/30°/−30°/−30°/30°/0°] to improve the fundamental frequency as it is controlled by the circumferential stiffness. In end-free vibration the fundamental frequency of the LTSC is 112.18 Hz, higher than the referenced quasi-isotropic Isogrid-core sandwich cylinder. Determined by the skin fracture, the compression strength of the LTSC is 328.03 kN, stronger than the referenced Isogrid-core sandwich cylinder failed at rib buckling and the post-failure deformation is ductile. According to the optimization scheme jointly constrained by the strength and the fundamental frequency, an ultra-light and strong cylinder with high fundamental frequency was successfully fabricated.  相似文献   

10.
In the presented study, polypropylene (PP) and high density polyethylene (PE) were blended at the ratios of 80/20 and 20/80 to simulate recycled waste thermoplastic mixtures. The effects of in situ grafting of PP/PE blends with maleic anhydride through the extruder on the mechanical and rheological properties of resulting wood/plastic composites were investigated. Different ratios of PP and PE in the blends created distinct properties in the resulting composites. Grafting of PP and PE blends improved the tensile and flexure properties of the resulting composites. The composites exhibited a reduced water uptake and resultant dimensional swelling due to grafting with maleic anhydride. Grafting of the blends also considerably improved the interfacial bonding and enhanced the dispersion of wood in the matrix, as evidenced by rheological analysis and scanning electron microscopy.  相似文献   

11.
The present paper tests experimentally the through-thickness electrical conductivity of carbon fiber-reinforced polymer (CFRP) composites laminates for aircraft applications. Two types of samples were prepared: Type A samples with carbon nanotubes (CNTs) and Type B samples without CNTs. During the electrical experiments, electrical currents of several mA were injected through the specimens. Electrical resistance was monitored simultaneously in order to deduce the changes in the through-the-thickness electrical conductivity caused by the addition of CNTs. Improvement of electrical conduction by two orders of magnitude was achieved through the addition of 1 wt% carbon nanotubes as compared to classic CFRP without CNTs. For moisture saturated samples, the influence of moisture absorption on such measures was found to be negligible.  相似文献   

12.
Carbon fibre was recovered from a thermoset composite via a solvo-thermal process and used as reinforcement in low density polyethylene (LDPE). The oxidized recovered carbon fibres have shown better properties than original non-oxidized fibres. The best interactions between the continuous and dispersed phases were found using 3-aminopropyl-trimetoxysilane and experimentally synthesized polyalkenyl-polymaleic anhydride based polymers. The tensile strength of the prepared composites nearly doubled when 3-aminopropyl-trimetoxysilane was used as compatibilizer, in comparison to the composites prepared without additives. Based on infrared analysis, a chemical reaction has been proposed between –COOH groups of compatibilizers and the –OH groups of the carbon fibre surface for the best composites.  相似文献   

13.
Cellulose fibers were isolated from Moroccan sugar cane bagasse by using three distinct stages. Firstly bagasse was subjected to (1) a hot water (70 °C) treatment to eliminate hemicellulose, then to (2) an alkaline aqueous solution (15% of sodium hydroxide (NaOH), 98 °C) treatment to eliminate lignin, and finally to (3) a bleaching stage. Sugar cane bagasse cellulose fibers were analyzed by different complementary analysis (FT-IR; 13C NMR and TG). The reinforcing capability of cellulose fibers extracted from sugar cane bagasse was investigated using low density polyethylene as matrix. The cellulosic preparations were free of bound lignin. The intrinsic viscosity, the viscosity average and the molecular weight were respectively 511 ml/g, 1769 and 286578 g/mol. An enhance on mechanical properties of composites was found, a gain of 72% in Young’s modulus at 25 wt.% fiber loading and a gain of 85% in flexural modulus at 25 wt.% fiber loading, as a results of a good interface adhesion between cellulose fibers and matrix.  相似文献   

14.
In-plane shear performance of masonry panels strengthened with FRP   总被引:1,自引:0,他引:1  
The opportunities provided by the use of Fiber Reinforced Polymers (FRPs) composites for the shear strengthening of tuff masonry structures were assessed on full-scale panels subjected to in-plane shear-compression tests at the ENEL HYDRO S.p.A. laboratory, ITALY. Tuff masonry specimens have been arranged in order to simulate both mechanical and textural properties typical of buildings located in South-Central Italian historical centres. In this paper, the outcomes of the experimental tests are presented. The monotonic shear-compression tests were performed under displacement control and experimental data have provided information about in-plane behaviour of as-built and FRP strengthened tuff masonry walls. Failure modes, shear strength, displacement capacity and post-peak performance are discussed.  相似文献   

15.
The compressive mechanical properties of two kinds of closed-cell aluminum foam–polymer composites (aluminum–epoxy, aluminum–polyurethane) were studied. The nonhomogeneous deformation features of the composites are presented based on the deformation distributions measured by the digital image correlation (DIC) method. The strain fluctuations rapidly grow with an increase in the compressive load. The uneven level of the deformation for the aluminum–polyurethane composite is lower than that for the aluminum–epoxy composite. The region of the preferentially fractured aluminum cell wall can be predicted by the strain distributions in two directions. The mechanical properties of the composites are investigated and compared to those of the aluminum foams. The enhancement effect of the epoxy resin on the Young’s modulus, the Poisson’s ratio and the compressive strength of the aluminum foams is greater than that of the polyurethane resin.  相似文献   

16.
Recently, the mankind has realized that unless environment is protected, he himself will be threatened by the over consumption of natural resource as well as substantial reduction of fresh air produced in the world. Conservation of forests and optimal utilization of agricultural and other renewable resources like solar and wind energies, and recently, tidal energy have become important topics worldwide. In such concern, the use of renewable resources such as plant and animal based fibre-reinforce polymeric composites, has been becoming an important design criterion for designing and manufacturing components for all industrial products. Research on biodegradable polymeric composites, can contribute for green and safe environment to some extent. In the biomedical and bioengineered field, the use of natural fibre mixed with biodegradable and bioresorbable polymers can produce joints and bone fixtures to alleviate pain for patients. In this paper, a comprehensive review on different kinds of natural fibre composites will be given. Their potential in future development of different kinds of engineering and domestic products will also be discussed in detail.  相似文献   

17.
Ballistic performance analysis of ultra-high molecular weight polyethylene (UHMW-PE) is critical for the design of armour systems against ballistic threats. However, no validated modelling strategy has been published in literature for UHMW-PE composite that captures the penetration and damage mechanisms of thick targets impacted between 900 m/s and 2000 m/s. Here we propose a mechanistically-based and extensively validated methodology for the ballistic impact analysis of thick UHMW-PE composite. The methodology uses a non-linear orthotropic continuum model that describes the composite response using a non-linear equation of state (EoS), orthotropic elastic–plastic strength with directional hardening and orthotropic failure criteria. A new sub-laminate discretisation approach is proposed that allows the model to more accurately capture out-of-plane failure. The model is extensively validated using experimental ballistic data for a wide range of UHMW-PE target thicknesses up to 102 mm against 12.7 mm and 20 mm calibre fragment simulating projectiles (FSPs) with impact velocities between 400 m/s and 2000 m/s. Very good overall agreement with experimental results is seen for depth of penetration, ballistic limit and residual velocity, while the penetration mechanisms and target bulge behaviour are accurately predicted. The model can be used to reduce the volume of testing typically required to design and assess thick UHMW-PE composite in ballistic impact applications.  相似文献   

18.
In this study, the effect of thermal ageing on low velocity impact response of E-glass/epoxy composites was investigated. Together with single impact case, repeated impact response of the composite samples was also investigated. Impact energies were chosen as 20 J, 40 J, 60 J, 80 J and 100 J for single impact tests while 20 J was chosen for repeated impact tests. The test coupons were cut out from composite panels with stacking sequence of [0/90]4S and the dimensions of the specimens were 100 mm × 100 mm, with the nominal thickness of 4.2 mm. The conditioning humidity and temperature were chosen respectively as 70% and 95 °C, considering the glass-transition temperature (Tg) of the intact composites which was determined as 78 °C. The samples were exposed to ageing durations of 100, 400, 700, 1000 and 1300 h by using a climatic test cabin. Along with images of damaged samples, variations of the impact characteristics such as absorbed energy, maximum contact force, maximum deflection and contact duration for successive impacts until perforation of the samples are provided. As a result of the study it is found that in addition to the mechanical properties, damage resistance of the E-glass/epoxy composites is significantly affected by the thermal ageing.  相似文献   

19.
Novel 3D-textile reinforced composites with a stretched fibre arrangement have very good specific mechanical properties and outstanding energy absorption capabilities. With respect to the specific technical requirements, 3D-textile preforms can be adjusted with regard to stiffness, strength and crash-worthiness by the intelligent combination of different fibre materials in the textile preform. Thus, hybrid 3D-textile preforms with tailored property profiles are excellent candidates for the use in impact and crash components of innovative lightweight structures for the aircraft and vehicle industry as well as for mechanical engineering applications.  相似文献   

20.
In this study, the mechanical and thermal properties of epoxy composites using two different forms of carbon nanotubes (powder and masterbatch) were investigated. Composites were prepared by loading the surface-modified CNT powder and/or CNT masterbatch into either ductile or brittle epoxy matrices. The results show that 3 wt.% CNT masterbatch enhances Young’s modulus by 20%, tensile strength by 30%, flexural strength by 15%, and 21.1 °C increment in the glass transition temperature (by 34%) of ductile epoxy matrix. From scanning electron microscopy images, it was observed that the CNT masterbatch was uniformly distributed indicating the pre-dispersed CNTs in the masterbatch allow an easier path for preparation of CNT-epoxy composites with reduced agglomeration of CNTs. These results demonstrate a good CNT dispersion and ductility of epoxy matrix play a key role to achieve high performance CNT-epoxy composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号