首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高速MAG电弧焊驼峰焊道产生过程的实验研究   总被引:4,自引:0,他引:4  
开展了高速活性气体保护(MAG)电弧焊接工艺实验,确定出了不同焊接电流条件下形成驼峰焊道时的临界焊接速度、相邻驼峰之间的距离以及同一驼峰焊道“波峰”和“谷底”的断面形貌.基于高速MAG电弧焊熔池的视觉检测图像,分析了驼峰焊道的产生机理,并利用上坡焊和下坡焊实验进行了验证.同时,也分析了保护气体成分对高速MAG电弧焊焊缝成形的影响.  相似文献   

2.
In high speed MAG welding process, some weld formation defects may be encountered. To get good weld quality, the critical welding speed beyond which humping or undercutting weld bead can occur must be known for different conditions. In this research, high speed MAG welding tests were carried out to check out the effects of different factors on the critical welding speed. Through observing the weld bead profiles and the macrographs of the transverse sections of MAG welds, the occurrence tendency of humping weld was analyzed, and the values of critical welding speed were determined under different levels of welding current or voltage, and the effect of shielding gas compositions on the critical welding speed was also investigated.  相似文献   

3.
陈姬  武传松 《中国焊接》2009,18(2):35-40
The developed mathematical model of humping formation mechanism in high-speed gas metal arc welding (GMAW) is used to analyze the effects of welding current and welding speed on the occurrence of humping bead. It considers both the momentum and heat content of backward flowing molten jet inside weld pool. Three-dimensional geometry of weld pool, the spacing between two adjacent humps and hump height along humping weld bead are calculated under different levels of welding current and welding speed. It shows that wire feeding rate, power intensity and the moment of backward flowing molten jet are the major factors on humping bead formation.  相似文献   

4.
对于高速熔化极气体保护焊接(GMAW)过程,当焊接速度超过临界值后,会出现驼峰焊道,焊缝成形变差.研究证明,熔池中动量很大的后向液体流是产生驼峰焊道的主要原因.研发了外加横向磁场发生装置,通过产生的电磁力来抑制后向液体流的动量,从而抑制驼峰焊道的形成.应用特斯拉计测试和考察了工件上磁感应强度大小及分布的影响因素.通过开展焊接工艺试验分析了不同强度的外加磁场作用下的焊缝成形规律.结果表明,外加横向磁场能明显调控熔池流态,有效抑制驼峰焊道和咬边等缺陷,显著改善焊缝成形,提高临界焊接速度.  相似文献   

5.
高速GMAW驼峰焊道形成过程的数值分析   总被引:4,自引:0,他引:4  
基于高速气体金属电弧焊(GMAW)驼峰焊道形成过程的实验观测结果,充分考虑熔池中后向液体流的动量和热焓,在熔池表面变形方程中加入后向液体流的动能项,并将熔滴热焓分布在整个熔池表面层,建立了高速GMAW驼峰焊道形成过程的数值分析模型.模拟了一定焊接条件下的驼峰焊道形成过程及其三维形状与尺寸,与实测结果进行了对比,证明本文模型能够较好地模拟高速GMAW过程,可定量分析驼峰焊道形成过程.  相似文献   

6.
窄坡口等离子-MAG复合焊工艺参数优化   总被引:1,自引:1,他引:0       下载免费PDF全文
针对转向架构架焊接变形及根部焊道背部成形问题,研究坡口角度为30°的V形窄坡口旁轴式等离子-MAG复合热源焊接工艺.文中以SMA490BW耐候钢平板对接为研究对象,基于响应面法建立了主要影响熔深的等离子电流、MAG电流、焊接速度、等离子气体流量与焊缝根部焊道的熔深、背部余高之间的数学关系模型,并依此模型分析了等离子-MAG复合焊接工艺参数对焊缝熔深能力的影响,获得了合适的复合焊接工艺参数.与普通MAG焊相比,窄坡口等离子-MAG复合焊接工艺既可保证焊缝根部完全熔透又能有效地减小接头的焊接变形.  相似文献   

7.
高速TIG-MIG复合焊焊缝驼峰及咬边消除机理   总被引:5,自引:5,他引:0       下载免费PDF全文
搭建了TIG-MIG复合焊试验平台及电参数-高速图像同步采集系统,进行了一系列低碳钢高速TIG-MIG复合焊工艺试验,研究了高速TIG-MIG复合焊的电弧形态、熔滴过渡及熔池行为对焊缝成形的影响,并确定了合适的匹配参数.结果表明,MIG焊电流在240~300 A,且TIG焊电流与MIG焊电流相当时,TIG-MIG复合焊焊接过程稳定,即使在焊接速度高达2.5 m/min时,焊缝仍无驼峰、咬边等缺陷,与传统MIG焊相比,熔深增加,熔宽减小.TIG-MIG复合焊由于电弧间的相互作用,两电弧指向发生偏转,电弧压力减小,焊接过程不产生弧坑,且熔宽变窄,这是避免驼峰和咬边缺陷的主要原因.  相似文献   

8.
Abstract

A comprehensive survey of high speed weld bead defects is presented with strong emphasis on the formation of humping and undercutting in autogenous and non-autogenous fusion welding processes. Blowhole and overlap weld defects are also discussed. Although experimental results from previous studies are informative, they do not always reveal the physical mechanisms responsible for the formation of these high speed weld bead defects. In addition, these experimental results do not reveal the complex relationships between welding process parameters and the onset of high speed weld bead defects. Various phenomenological models of humping and undercutting have been proposed that were based on observations of events in different regions within the weld pool or the final weld bead profile. The ability of these models to predict the onset of humping or undercutting has not been satisfactorily demonstrated. Furthermore, the proposed formation mechanisms of these high speed weld bead defects are still being questioned. Recent welding techniques and processes have, however, been shown to be very effective in suppressing humping and undercutting by slowing the backward flow of molten metal in the weld pool. This backward flow of molten weld metal may be the principal physical phenomenon responsible for the formation of humping and undercutting during high speed fusion welding.  相似文献   

9.
王林  高进强  李琰 《焊接学报》2016,37(11):109-112,118
当熔化极气体保护焊的焊接速度高于一定临界值时,会出现驼峰焊道成形缺陷.为防止驼峰焊道的出现,通过外加磁场与熔池中的焊接电流相互作用,产生指向熔池前方的电磁力,抑制熔池中后向液体流的动量从而抑制驼峰的产生.通过建立焊前工件上外加磁场的三维模型,计算了工件上的外加电磁场分布.提出热-磁耦合分析方法,实现焊接过程中熔池内外加电磁场的数值计算.结果表明,高速焊过程中,外加磁场主要以横向磁场分布在熔池区;焊丝与磁极间的距离会显著改变熔池内外加横向磁场的分布.  相似文献   

10.
焊接速度和焊接电流对竖向高速GMAW驼峰焊缝的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
张理  郭震  周伟  毕贵军  韩冰 《焊接学报》2020,41(4):56-61
运用自主研发的爬壁机器人研究焊接速度和焊接电流对竖向高速熔化极气体保护焊(gas metal arc welding,GMAW)驼峰焊缝的影响. 结果表明,焊接速度或焊接电流超过某一临界值时,竖向高速GMAW会形成驼峰焊缝,且熔池中由电弧压力、熔滴冲击力和重力作用下产生的动量很大的后向液体流是竖向高速GMAW形成驼峰焊缝的主要原因. 同时,焊接速度和焊接电流显著影响驼峰焊缝形貌. 当焊接电流不变时,随焊接速度提高,驼峰焊缝的驼峰间距和驼峰高度先稳定减小,后缓慢减小,而焊缝宽度则稳定减小;当焊接速度不变时,随焊接电流增加,驼峰焊缝的驼峰间距先增加后减小,驼峰高度则是先增加后不变,而焊缝宽度则稳定增加. 此外,焊接速度过小或焊接电流过大均会造成金属液下淌.  相似文献   

11.
Abstract

A commonly observed welding defect that characteristically occurs at high welding speeds is the periodic undulation of the weld bead profile, also known as humping. The occurrence of humping limits the range of usable welding speeds in most fusion welding processes and prevents further increases in productivity in a welding operation. At the present time, the physical mechanisms responsible for humping are not well understood. Thus, it is difficult to know how to suppress humping in order to achieve higher welding speeds. The objectives of this study were to identify and experimentally validate the physical mechanisms responsible for the humping phenomenon during high speed gas metal arc (GMA) welding of plain carbon steel. A LaserStrobe video imaging system was used to obtain video images of typical sequences of events during the formation of a hump. Based on these recorded video images, the strong momentum of the backward flow of molten metal in the weld pool that typically occurred during high speed welding was identified as the major factor responsible for the initiation of humping. Experiments with different process variables affecting the backward flow of molten weld metal were used to validate this hypothesis. These process variables included welding speed, welding position and shielding gas composition. The use of downhill welding positions and reactive shielding gases was found to suppress humping and to allow higher welding speeds by reducing the momentum of the backward flow of molten metal in the weld pool. This would suggest that any process variables or welding techniques that can dissipate or reduce the momentum of the backward flow of molten metal in the weld pool will facilitate higher welding speeds and productivity.  相似文献   

12.
Considering the inflttence of backward flowing molten jet observed by experiments, a new pool surface deformation formula and droplets heat content model are used to investigate the humping formation mechanism during high-speed gas metal arc (GMA) welding. Three-dimensional geometry of the humping bead is numerically simulated only if some extra force and heat acted at the rear part of weld pool are taken into account in the model. It has proved that both the momentum and heat content of backward flowing molten jet must be appropriately treated to quantitatively analyze the physical mechanism of the humping phenomenon.  相似文献   

13.
The momentum of strong backward flowing melt jet and the thermal action from transferred droplets are two dominating factors affecting the formation of humping bead in high speed gas metal arc welding (GMAW). Appropriate describing the influence of the distribution mode of droplet heat content in the weld pool is essential to understand the physical mechanism of humping bead formation. Based on the experimental results, four kinds of droplet heat content distribution modes are proposed and employed to calcu...  相似文献   

14.
耦合电弧钨极GPCA-TIG焊工艺   总被引:2,自引:2,他引:0       下载免费PDF全文
将耦合电弧钨极和GPCA焊方法结合,形成了耦合电弧钨极GPCA-TIG焊方法,该方法可实现深熔深高速度焊接.对比分析了在较高焊接速度时常规TIG焊、耦合电弧钨极TIG焊和耦合电弧钨极GPCA-TIG焊的焊缝表面成形和截面形貌,发现耦合电弧钨极GPCA-TIG焊可避免咬边和驼峰焊道的产生,并且焊缝熔深有所增加.耦合电弧钨极GPCA-TIG焊工艺试验表明,焊缝熔深和熔宽随焊接速度的减小和外喷嘴位置的升高而增大,随着弧长和外层氧气流量的增加先增加后略有减小;随着焊接速度的减小,弧长和外层氧气流量的增大,焊缝咬边减轻,外喷嘴相对高度变化时焊缝均未出现咬边.  相似文献   

15.
Without any presupposed mechanism, a unified three-dimensional model is developed to predict the formation of humping bead in high speed gas metal arc welding, which considers the three phase coupling of solid, liquid and gas and the effect of shear stress exerting on weld pool surface caused by arc plasma. A strong backward fluid flow in weld pool is identified as the major factor for bead hump formation. The generation of thin liquid transition zone and its premature solidification are two conditions responsible for the occurrence of humped weld. In case of low inner contact angle between the liquid metal and workpiece surface, the bead hump is still generated. With increasing welding current, the bead hump can be suppressed.  相似文献   

16.
高速旋转电弧窄间隙MAG焊焊缝成形的分析   总被引:2,自引:0,他引:2       下载免费PDF全文
采用平特性电源,研究了高速旋转电弧窄间隙MAG焊接工艺对焊缝成形的影响规律。结果表明,旋转电弧是通过热量的合理分配来改善焊缝成形,旋转频率对熔化速度的影响很小。提高旋转频率和降低保护气中CO2的含量有利于增加侧壁熔深,改善焊缝成形;但同时也容易造成电弧与侧壁短路,恶化焊缝成形,严重的将出现未熔合。所以在间隙小于10min时旋转频率应小于50Hz。焊接速度的变化不会影响过渡形式,但较低的焊接速度可以得到更大的表面下凹。  相似文献   

17.
As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.  相似文献   

18.
分析了压力环境下气体混合比对脉冲MAG焊飞溅率及焊缝熔池形状的影响. 结果表明,压力环境下相同比例的保护气体在流速不变的情况下,起活性作用的气体组分相对较多,电弧弧柱紊乱加剧,飞溅剧烈,焊接过程极不稳定. 为获得高气压环境下稳定的焊接过程,减小飞溅率,通过提高混合气体配比中氩气体积分数来降低活性气体造成的能量损失,从而减少飞溅. 防止缺陷的产生. 综合考虑飞溅率、熔滴过渡稳定性及焊缝熔池形状等因素,在0.3 MPa环境压力下使用90%Ar+10%CO2混合气进行焊接可获得最佳的焊接效果. 气体配比的有效调节对于提高高气压环境下脉冲MAG焊焊接过程稳定性和焊接质量具有显著作用.  相似文献   

19.
One of the versions of the plasma–metal inert gas (MIG) process is basically a combination of a plasma arc with a MIG/metal active gas (MAG) arc in a single torch. With this association, the advantages of each arc are combined. The main characteristic of this is the independence between the heat input by the process and the deposited material, resulting in greater facility to control bead weld geometry. In the current literature, there is a shortage of information related to the process, and most of this goes back to the 1970s and 1980s when the technology available was not able to make the process viable for industry. However, in recent years, the use of the diffusion of new electronic power sources used in welding has sparked up again the interest in plasma–MIG process. In this context, this paper aims to contribute to the studies related to the influence of the MIG and plasma current balance on the geometry of the bead weld and wire fusion rate. Bead-on-plate welds were carried out with plasma and MIG/MAG current combinations at three levels each, keeping, by welding speed corrections, the bead volume the same. It was observed that the introduction of the plasma current over the MIG/MAG current reduces penetration and dilution and leads to convex beads. On the other hand, the use of plasma current increases the MIG/MAG wire fusion rate. However, it seems that the intensity of the plasma current is not the governing parameter of those changes.  相似文献   

20.
The formation of stable back beads in a root pass weld during one side multi-layer welding is important to achieve high quality welded metal joints in MAG welding. The authors employed the switch back welding method for V groove joints without backing plates. In this switch back welding method, the torch moves forward and backward with an oscillation frequency of 2.5 Hz. In order to achieve this welding, personal computers control the conventional welding robot, the power source characteristic and the wire feeder unit. During the forward, the torch is weaving on the V groove gap without the weld pool. If the weaving width becomes wider than the proper width, the tip of the wire becomes high and a good back bead cannot be obtained. The weaving width is adjusted so as to get the proper width in the switch back welding. The suitability of the welding conditions for each root gap was verified by observation of the arc, the weld pool and the external appearance of back beads. A good back bead was obtained under V groove welding in 2–4 mm gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号