首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel InGaP/GaAs0.92Sb0.08/GaAs double heterojunction bipolar transistor (DHBT) with low turn-on voltage has been fabricated. The turn-on voltage of the DHBT is typically 150 mV lower than that of the conventional InGaP/GaAs HBT, indicating that GaAsSb is a suitable base material for reducing the turn-on voltage of GaAs HBTs. A current gain of 50 has been obtained for the InGaP/GaAs0.92Sb0.08/GaAs DHBT. The results show that InGaP/GaAsSb/GaAs DHBTs have a great potential for reducing operating voltage and power dissipation  相似文献   

2.
N-p-n InGaP/GaAs heterojunction bipolar transistors (HBTs) with compositionally graded In/sub x/Ga/sub 1-x/As (Be doped) bases have been successfully grown by solid-source molecular beam Epitaxy (SSMBE) using a gallium phosphide (GaP) decomposition source. In this paper, the dc and RF characteristics of HBTs with different indium mole fractions in the graded In/sub x/Ga/sub 1-x/As base (x:0 /spl rarr/ ;0.1 and x:0 /spl rarr/ 0.05) are measured to investigate optimum-grading profiles. The measured average current gains, /spl beta/s of a control sample, a 10% graded-base sample and a 5% graded-base sample, are 162, 397 and 362, respectively. To our knowledge, these current gains are the highest values ever reported in compositionally graded-base InGaP/GaAs HBTs with a base sheet resistance R/sub sh/ of /spl sim/200 /spl Omega//sq establishing a new benchmark for InGaP/GaAs HBTs. Furthermore, these compositionally graded-base HBTs show higher unity current/gain cutoff frequency, f/sub T/ and maximum oscillation frequency, f/sub max/. Compared to the control sample with the same base thickness, the base transit time /spl tau//sub B/ of the graded sample is reduced by /spl sim/15% to /spl sim/20% by the induced built-in potential, resulting in an increase of f/sub max/ from 16 to 18.5 GHz in a device with an emitter size of 10/spl times/10 /spl mu/m/sup 2/. Additionally, for the 5% graded-base sample, with a 5/spl times/5 /spl mu/m/sup 2/ emitter region, f/sub T/ and f/sub max/ are 16.3 and 33.8 GHz, respectively, under low-level collector current. These results demonstrate that InGaP/GaAs HBTs with In/sub x/Ga/sub 1-x/As graded-base layers (x:0 /spl rarr/ 0.05) have the potential for high-speed analogue to digital converters.  相似文献   

3.
Improved power linearity of InGaP/GaAs heterojunction bipolar transistors (HBTs) with collector design is reported. The collector design is based on nonuniform collector doping profile which is to employ a thin high-doping layer (5/spl times/10/sup 17/ cm/sup -3//200 /spl Aring/) inside the collector (1/spl times/10/sup 16/ cm/sup -3//7000 /spl Aring/). The additional thin high-doping layer within the collector shows no obvious effects and impacts in dc characteristics and device fabrication if the layer was inserted close to the subcollector. For an HBT with a thin high-doping layer being inserted 4000 /spl Aring/ from the base-collector junction, the experimental result on third-order intermodulation demonstrates the significant reduction by as large as 9 dBc and improved IIP3 by 5 dB under input power of -10 dBm at frequency of 1.8 GHz.  相似文献   

4.
4GHz300mW InGaP/GaAs HBT功率管研制   总被引:1,自引:1,他引:1       下载免费PDF全文
通过采用发射极-基极金属自对准、发射极镇流电阻,电镀空气桥等工艺改善了器件的高频特性,提高了器件热稳定性与功率特性.当器件工作在AB类,工作频率为4 GHz,集电极偏置电压为3.5 V时,尺寸为16×(3 μm×15 μm)的功率管获得了最大输出功率为24.9 dBm(309.0 mW)、功率增益为8.1dB的良好性能.  相似文献   

5.
A self-aligned InGaP/GaAs heterojunction bipolar transistor with a compositionally graded InxGa1-xAs base has been demonstrated with fT=83 GHz and fmax=197 GHz. To our knowledge, these results are the highest reported for both parameters in InGaP/GaAs HBT's. The graded base, which improves electron transport through the base, results in a DC current gain and a cutoff frequency which are 100% and 20% higher, respectively, than that achieved by an identical device with a nongraded base. The high fmax results from a heavily doped base, self-aligned base contacts, and a self-aligned collector etch. These results demonstrate the applicability of InGaP/GaAs HBT's in high-speed microwave applications  相似文献   

6.
This paper describes the fabrication and characteristics of small-scaled InGaP/GaAs HBTs with high-speed as well as low-current operation. To reduce both the emitter size SE and the base-collector capacitance CBC simultaneously, the HBTs are fabricated by using WSi/Ti as the base electrode and by burying SiO2 in the extrinsic base-collector region under the base electrode. WSi/Ti simplifies and facilitates processing to fabricate a small base electrode, and makes it possible to reduce the width of the base contact to less than 0.4 μm without the large increase in the base resistance. The DC current gain of 20 is obtained for an HBT with S E of 0.3×1.6 μm2 due to the suppression of emitter size effect by using InGaP as the emitter material. An HBT with SE of 0.6×4.6 μm2 exhibited fT of 138 GHz and fmax of 275 GHz at IC of 4 mA; and an HBT with SE of 0.3×1.6 μm2 exhibited fT of 96 GHz and fmax of 197 GHz at IC of 1 mA. These results indicate the great potential of these HBTs for high-speed and low-power circuit applications  相似文献   

7.
High-performance HBTs with a carbon-doped base layer (p=4*10/sup 19/ cm/sup -3/) are reported. The use of carbon as a p-type dopant allows the emitter-base p-n junction to be accurately positioned relative to the heterojunction, and the MOCVD growth method ensures consistency and uniformity of the wafer epitaxial structure. Microwave HBTs with current gains h/sub FE/=50 and f/sub T/ and f/sub max/ values of 42 GHz and 117 GHz, respectively, are reported.<>  相似文献   

8.
Degradations of InGaP/GaAs heterojunction bipolar transistor (HBT) collector current and base current subjected to cumulative long-term junction temperature stress are examined experimentally. The aged SPICE model parameters as a function of stress time are extracted from the measurement data. The VCO phase noise, tuning range, and output amplitude are studied in circuit simulation. The phase noise increases, tuning range and output amplitude decrease with increasing junction temperature.  相似文献   

9.
介绍L波段、低偏置电压下工作的自对准InGaP/GaAs功率异质结双极晶体管的研制.在晶体管制作过程中采用了发射极-基极金属自对准、空气桥以及减薄等工艺改善其功率特性.功率测试结果显示:当器件工作在AB类,工作频率为2GHz,集电极偏置电压仅为3V时,尺寸为2×(3μm×15μm)×12的功率管获得了最大输出功率为23dBm,最大功率附加效率为45%,线性增益为10dB的良好性能.  相似文献   

10.
介绍L 波段、低偏置电压下工作的自对准In Ga P/ Ga As功率异质结双极晶体管的研制.在晶体管制作过程中采用了发射极-基极金属自对准、空气桥以及减薄等工艺改善其功率特性.功率测试结果显示:当器件工作在AB类,工作频率为2 GHz,集电极偏置电压仅为3V时,尺寸为2×(3μm×1 5 μm)×1 2的功率管获得了最大输出功率为2 3d Bm,最大功率附加效率为4 5 % ,线性增益为1 0 d B的良好性能  相似文献   

11.
This letter demonstrates a novel GaAs/In0.25Ga0.75 As/GaAs pseudomorphic heterostructure with δ-doping on the buffer prepared by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The proposed device with a 1.5×80 μm2 gate reveals an extrinsic transconductance as high as 250 (305) mS/mm and a saturation current density as high as 790 (890) mA/mm at 300 (77) K. Significantly improvements on forward gate voltage swing (up to 3 V) and on reverse leakage current (smaller than 10 μA/mm at -6.5 V) are demonstrated due to inverted parallel conduction (IPC) effect. We also carried out secondary-ion mass spectrometry (SIMS) profiles to confirm the quality of the proposed device  相似文献   

12.
A comprehensive study of emitter-ledge thickness of InGaP/GaAs heterojunction bipolar transistors (HBTs) has been undertaken. It is shown that the recombination rate and electron densities are drastically increased near the exposed base surface between the base contact and the emitter ledge. In contrast, the corresponding hole densities are decreased. If the emitter ledge is too thick, current will flow through the undepleted ledge, which increases the emitter-size effect. In contrast, if the emitter ledge is too thin, it may not effectively passivate the surface. Therefore, the thickness of the emitter ledge is a crucial issue and should be carefully considered. It is shown that, from simulated and experimental results, the optimum emitter-ledge thickness of InGaP/GaAs HBT is 100-200 Aring  相似文献   

13.
InGaP/GaAs heterojunction bipolar transistors (HBTs) with polycrystalline GaAs buried under the base electrode have been fabricated using low-temperature gas-source molecular beam epitaxy on SiO2-patterned substrates. A cutoff frequency of 120 GHz and a maximum oscillation frequency of 230 GHz were obtained for three parallel 0.7×8.5 μm HBTs. Compared to HBTs without the polycrystal, the collector capacitance was reduced by 28% and the maximum stable gain was improved by 1.2 dB due to complete carrier depletion in the polycrystal under the base electrode. These results show the high potential of the proposed HBTs for high-speed digital and broadband-amplifier applications  相似文献   

14.
Good-quality metamorphic InP buffer layers have been successfully grown on GaAs substrates by metal-organic chemical vapor deposition. Characterization by atomic force microscope, transmission electron microscopy, high-resolution X-ray diffraction, and Hall measurements indicated that the layers are of high crystalline quality, good mobility, and excellent surface morphology. On this buffer, we demonstrated the first metamorphic InP/GaAsSb/InP double heterojunction bipolar transistors (DHBTs) with good material quality and device performance. Metamorphic DHBTs showed direct-current and radio-frequency characteristics that are comparable to those grown on lattice-matched InP substrates.  相似文献   

15.
InGaP/GaAs heterojunction bipolar transistors (HBTs) with and without passivation ledge in the extrinsic base region were investigated. Gummel plot changes before and after reliability testing were compared. The experimental results demonstrated that the devices featuring the lower quality of the extrinsic base surface are more sensitive to a temperature–current stress. The HBTs with a passivation ledge have an activation energy of 1.41 eV and a mean time to failure (MTTF) of 106 h whereas the HBTs without passivation ledge have an activation energy of 1.24 eV and a MTTF of 105 h.  相似文献   

16.
The successful fabrication of an ion-implanted GaAs/AlGaAs heterojunction FET device is discussed. Half-micrometer gate-length FET devices are fabricated by ion implantation into GaAs/AlGa heterostructures grown by metalorganic chemical vapor deposition (MOCVD) on 3-in-diameter GaAs substrates. The FET device exhibits a maximum extrinsic transconductance of 280 mS/mm with reduced transconductance variation over 2 V of gate bias. Excellent microwave performance is achieved with an ft of 40 GHz, which is comparable to results obtained from 0.25-μm gate GaAs MESFETs. The effects of ion implantation on the heterojunction and corresponding device characteristics are also discussed  相似文献   

17.
High-current effects in InGaP/GaAs heterojunction bipolar transistors (HBTs) were modeled and characterized. In addition to the self-heating effect, high currents were found to degrade large-signal performance mainly through Kirk and quasi-saturation effects. New formalisms in terms of base transit time and base-collector diffusion capacitance were used to modify the conventional Gummel-Poon model. This new model was verified against large-signal characteristics measured at 2 GHz. The validity of the new model for HBTs of different emitter geometry was also explored  相似文献   

18.
The ion beam mixing behavior of InGaAs/GaAs strained layer superlattice structures grown by metalorganic chemical vapor deposition was studied using secondary ion mass spectroscopy and Rutherford backscattering channeling. The fluence dependence of intermixing by MeV Kr+ irradiation has been investigated. Significant intermixing occurs for fluences much lower than for similar intermixing in other superlattice systems (i.e. ALAs/GaAs). The intermixing exhibits no temperature dependence for fluences of 2 x 1015 to 5 x 1015 cm−2 which sharply contrasts with the behavior of the AlAs/GaAs superlattice system which shows a strong temperature dependence, including a miscibility gap, in the temperature range 523 to 973K. Samples irradiated at 573K retain a high degree of crystallinity when compared to lower temperature irradiations indicating that the InGaAs/GaAs superlattice can be disordered and still retain crystallinity.  相似文献   

19.
An HBT (heterojunction bipolar transistor) structure using an AlGaAs-InGaP emitter is proposed. The AlGaAs-InGaP configuration introduces an electron launcher in the emitter and makes use of the velocity overshoot effect. This enhances the emitter transport and reduces the electron accumulation in the emitter. Simulations show that, by using the AlGaAs-InGaP structure, the emitter charging time can be greatly reduced compared to the conventional AlGaAs emitter design. As a result, the cutoff frequency can be substantially increased. A cutoff frequency of 235 GHz has been predicted  相似文献   

20.
The following paper presents a study on GaN-based light-emitting diodes (LEDs) with naturally textured surface grown by metal-organic chemical vapor deposition. The study utilizes a well-known approach of increasing light extraction efficiency. The approach is based on naturally formed V-shaped pits on surface that originate from low-temperature-growth (LTG) conditions of topmost p-GaN contact layer. In our experiment, the high-temperature-grown (HTG) p-GaN layer was inserted between the p-AlGaN electron-blocking layer and the LTG p-GaN contact layer, in order to suppress pit-related threading dislocations (TDs). These TDs may intersect the underlying active layer. The results of the experiment show that GaN-based LEDs with the HTG p-GaN insertion layer can effectively endure negative electrostatic discharge voltage of up to 7000 V. We also noted that application of 20-mA current injection yields output power of about 16 mW for the LEDs emitting around 465 nm. The output power results correspond to an external quantum efficiency of around 30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号