首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A whole-field time-domain fluorescence lifetime imaging (FLIM) microscope with the capability to perform optical sectioning is described. The excitation source is a mode-locked Ti:Sapphire laser that is regeneratively amplified and frequency doubled to 415 nm. Time-gated fluorescence intensity images at increasing delays after excitation are acquired using a gated microchannel plate image intensifier combined with an intensified CCD camera. By fitting a single or multiple exponential decay to each pixel in the field of view of the time-gated images, 2-D FLIM maps are obtained for each component of the fluorescence lifetime. This FLIM instrument was demonstrated to exhibit a temporal discrimination of better than 10 ps. It has been applied to chemically specific imaging, quantitative imaging of concentration ratios of mixed fluorophores and quantitative imaging of perturbations to fluorophore environment. Initially, standard fluorescent dyes were studied and then this FLIM microscope was applied to the imaging of biological tissue, successfully contrasting different tissues and different states of tissue using autofluorescence. To demonstrate the potential for real-world applications, the FLIM microscope has been configured using potentially compact, portable and low cost all-solid-state diode-pumped laser technology. Whole-field FLIM with optical sectioning (3D FLIM) has been realized using a structured illumination technique.  相似文献   

2.
在激光扫描共聚焦显微成像技术基础上引入了光谱成像技术以便区分生物组织中的不同荧光成分。采用分光棱镜对荧光进行光谱展开,在光谱谱面处设置两个可移动缝片形成出射狭缝,两个步进电机带动安装其上的两个缝片设置系统在整个工作波长(400~700 nm)内的光谱带宽,其最小光谱带宽优于5 nm。用488 nm激光和低压汞灯实际测量了几条谱线对应的狭缝位置并和理论值做了比较,结果显示实际狭缝位置和理论值的差值均小于0.1 mm。在全光谱和50 μm出射狭缝(对应2.5 nm光谱带宽)对老鼠肾脏组织进行了共聚焦光谱成像实验,获得了老鼠肾脏组织中DAPI标定的细胞核图像和Alexa Fluor®488标定的肾脏小球曲管图像,实现了对老鼠肾脏组织不同成分的区分。实验结果表明:提出的系统能够进行共聚焦光谱成像,扩大了共聚焦显微镜的适用范围。  相似文献   

3.
为了能对自主研制的脑肿瘤手术医用显微成像光谱仪进行光谱定标,设计了由单色仪、钨灯光源、棱镜-光栅-棱镜成像光谱仪及手术显微平台组成的光谱定标系统。采用单色仪波长扫描法,自主开发了相应的光谱定标系统软件,获得了显微成像光谱仪全谱段的光谱数据,完成了数据处理和分析等工作。通过调整光路、单色仪定标、成像光谱仪定标3个步骤实现了系统的光谱定标。定标结果表明:显微成像光谱仪的光谱区大于400~900nm;定标精度高于0.1nm,光谱分辨率高于3nm,各项特征指标均高于设计指标。测试验证实验表明,所建立的光谱定标系统定标精准,结构简单、紧凑,操作简单,符合显微成像光谱仪的实际临床应用要求。  相似文献   

4.
显微高光谱成像系统的设计   总被引:21,自引:4,他引:17  
设计出一种基于棱镜 光栅 棱镜组合分光方式的显微高光谱成像实验系统.系统根据推帚式成像光谱仪的原理进行设计,采用棱镜 光栅 棱镜组合元件在后光学系统进行光谱分光,利用高精度载物台自动装置驱动样品进行推扫成像,选用PCI总线作为数据采集的微机接口.整个系统由显微镜、分光计、面阵CCD相机、载物台自动装置以及数据采集与控制模块等几部分组成.系统的光谱范围从400nm到800nm,120个波段,光谱分辨率优于5nm,空间分辨率大约1μm.该系统具有直视性、光谱分辨率高、结构紧凑、成本低等优点;不仅能够提供微小物体在可见光范围的单波段显微图像,而且能够获得图像中任一像素的光谱曲线,实现了光谱技术和显微成像技术的结合,成功的将成像光谱技术应用到显微领域,可广泛应用于临床医学、生物学、材料学、微电子学等学科领域.  相似文献   

5.
By monitoring coenzyme autofluorescence modifications. as an indicator of cell damage. the cellular response to femtosecond near-infrared (NIR) radiation (two-photon absorption) was compared with exposure to low-power UV A radiation (one-photon absorption). Excitation radiation from a tunable Ti-sapphire laser. focused through highnumerical- aperture microscope optics. provided diffractionlimited mlcrobeams of an adjustable peak power. Laser scanning NIR microscopy was used to detect spatially the intracellular distribution of fluorescent coenzymes by fluorescence intensity imaging as well as fluorescence lifetime imaging (T-mapping). Upon the onset of UV or NIR exposure. Chinese hamster ovary cells exhibited blue/green autofluorescence witq a mean lifetime of 2·2 ns. which was attributed to NAD(P)H in mitochondria. Exposure to 365 nm radiation from a high-pressure mercury lamp (1 m W. 300 J cm-2 ) resulted in oxidative stress correlated with increased autofluorescence intensity. onset of nuclear fluorescence. and a fluorescence lifetime decrease. The cellular response to femtosecond NIR micro beams depended significantly on peak power. Peak powers above a threshold value of about 0·5kW (average power: 6mW). 0·55kW (7mW) and 0·8kW (lOmW) at 730nm. 760nm and 800nm. respectively. resulted in the onset of short-lived luminescence with higher intensity (100x) than the intracellular NAD(P)H fluorescence. This luminescence. accompanied by destruction of cellular morphology. was localized and occurred in the mitochondrial region. In contrast. beams at a power of less than 0·5 kW allowed nondestructive fluorophore detection with high spatial and temporal resolution without modification of cellular redox state or cell morphology.  相似文献   

6.
Spectrofluorometric imaging microscopy is demonstrated in a confocal microscope using a supercontinuum laser as an excitation source and a custom‐built prism spectrometer for detection. This microscope system provides confocal imaging with spectrally resolved fluorescence excitation and detection from 450 to 700 nm. The supercontinuum laser provides a broad spectrum light source and is coupled with an acousto‐optic tunable filter to provide continuously tunable fluorescence excitation with a 1‐nm bandwidth. Eight different excitation wavelengths can be simultaneously selected. The prism spectrometer provides spectrally resolved detection with sensitivity comparable to a standard confocal system. This new microscope system enables optimal access to a multitude of fluorophores and provides fluorescence excitation and emission spectra for each location in a 3D confocal image. The speed of the spectral scans is suitable for spectrofluorometric imaging of live cells. Effects of chromatic aberration are modest and do not significantly limit the spatial resolution of the confocal measurements.  相似文献   

7.
We used spectrally resolved fluorescence lifetime imaging (SLIM) to investigate the mitochondria staining dye rhodamine 123 and binding of DAPI to RNA and DNA in cells. Moreover, different components of the photosensitizer Photofrin were resolved in cell cultures by SLIM. To record lifetime images (tau-mapping) with spectral resolution we used a laser scanning microscope equipped with a spectrograph, a 16 channel multianode PMT, and multidimensional time-correlated single photon counting. A Ti:Saphir laser was used for excitation or alternatively a ps diode laser. With this system the time- and spectral-resolved fluorescence characteristics of different fluorophores were investigated in cell cultures. As an example, the mitochondria staining dye rhodamine I23 could be easily distinguished from DAPI, which binds to nucleic acids. Also different binding sites of DAPI could be discriminated. This was proved by the appearance of different lifetime components within different spectral channels. Moreover, we were able to detect monomeric and aggregated forms of Photofrin in cells. Different lifetimes could be attributed to the various compounds. In addition, a detailed analysis of the autofluorescence by SLIM could explain changes of mitochondrial metabolism during Photofrin-PDT.  相似文献   

8.
迟鹏  彭建  谷付星 《光学仪器》2019,41(4):63-68
在对微纳材料光学特性表征中,需要获得分辨率更高的波长和强度的荧光图像。普通的显微镜无法满足测试的要求,因此将普通的成像显微镜、光谱仪以及纳米移动台组成激光扫描显微镜成像系统,并利用LabVIEW开发了一套完整的集二维扫描采集与信号图像处理一体的系统上位机软件。扫描采集过程使用了低通滤波等数字信号处理方法消除光谱仪信号噪声的影响。利用本系统测量硒化镉纳米带、单层二硫化钼得到了荧光强度图像以及荧光峰值波长图像,能分辨出最小波长为0.03 nm的荧光。将采集长度与实际长度进行比较并分析荧光强度差异,取得了较好的效果。  相似文献   

9.
A novel compact illumination device in variable‐angle total internal reflection fluorescence microscopy (VA‐TIRFM) is described. This device replaces the standard condensor of an upright microscope. Light from different laser sources is delivered via a monomode fibre and focused onto identical parts of a sample under variable angles of total internal reflection. Thus, fluorophores in close proximity to a cell–substrate interface are excited by an evanescent wave with variable penetration depth, and localized with high (nanometre) axial resolution. In addition to quantitative measurements in solution, fluorescence markers of the cytoplasm and the plasma membrane, i.e. calcein and laurdan, were examined using cultivated endothelial cells. Distances between the glass substrate and the plasma membrane were determined using the mathematical algorithm of a four‐layer model, as well as a Gaussian‐shaped intensity profile of the illumination spot on the samples. Distances between 0 and 30 nm in focal contacts and between 100 and 300 nm in other parts of the cell were thus determined. In addition to measurements of cell–substrate topology, the illumination device appears appropriate for numerous applications in which high axial resolution is required, e.g. experiments on endocytosis or exocytosis, as well as measurements of ion concentrations proximal to the plasma membrane. The compact illumination device is also suitable for combining TIRFM with further innovative techniques, e.g. time‐resolved fluorescence spectroscopy, fluorescence lifetime imaging (FLIM) or fluorescence resonance energy transfer (FRET).  相似文献   

10.
The characteristics of a stable and flexible laser system based on a synchronously pumped optical parametric oscillator (OPO) is presented. This OPO can offer very stable operation with both ~1 ps and ~300 fs outputs over a broad wavelength range, i.e., 920–1200 nm. Combining the pump tuning with the OPO tuning, a total Raman range of 1900–5500 cm?1 is accessible. For maximum spectral sensitivity, the CARS microsope based on the ps laser system is presented in detail. The lateral resolution of the microscope is diffraction limited to be about 390 nm. Fast wavelength switching (sub‐second) between two Raman vibrational frequencies, i.e., 2848 cm?1 for C? H aliphatic vibrations and 3035 cm?1 for C? H aromatic vibrations is presented as an example, although this also extends to other Raman frequencies. The possibility of obtaining a multimodal imaging system based on the fs laser system is also discussed. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Functional alterations are first signs of a starting pathological process. A device that measures parameter for the characterization of the metabolism at the human eye-ground would be a helpful tool for early diagnostics in stages when alterations are yet reversible. Measurements of blood flow and of oxygen saturation are necessary but not sufficient. The new technique of auto-fluorescence lifetime measurement (FLIM) opens in combination with selected excitation and emission ranges the possibility for metabolic mapping. FLIM not only adds an additional discrimination parameter to distinguish different fluorophores but also resolves different quenching states of the same fluorophore. Because of its high sensitivity and high temporal resolution, its capability to resolve multi-exponential decay functions, and its easy combination with laser scanner ophthalmoscopy, multi-dimensional time-correlated single photon counting was used for fundus imaging. An optimized set up for in vivo lifetime measurements at the human eye-ground will be explained. In this, the fundus fluorescence is excited at 446 or 468 nm and the time-resolved autofluorescence is detected in two spectral ranges between 510 and 560 nm as well as between 560 and 700 nm simultaneously. Exciting the fundus at 446 nm, several fluorescence maxima of lifetime t1 were detected between 100 and 220 ps in lifetime histograms of 40 degrees fundus images. In contrast, excitation at 468 nm results in a single maximum of lifetime t1 = 190 +/- 16 ps. Several fundus layers contribute to the fluorescence intensity in the short-wave emission range 510-560 nm. In contrast, the fluorescence intensity in the long-wave emission range between 560 and 700 nm is dominated by the fluorescence of lipofuscin in the retinal pigment epithelium. Comparing the lateral distribution of parameters of a tri-exponential model function in lifetime images of the fundus with the layered anatomical fundus structure, the shortest component (t1 = 190 ps) originates from the retinal pigment epithelium and the second lifetime (t2 = 1,000 ps) from the neural retina. The lifetime t3 approximately 5.5 ns might be influenced by the long decay of the fluorescence in the crystalline lens. In vitro analysis of the spectral properties of expected fluorophores under the condition of the living eye lightens the interpretation of in vivo measurements. Taking into account the transmission of the ocular media, the excitation of NADH is unlikely at the fundus.  相似文献   

12.
Coherent anti‐Stokes Raman scattering (CARS) microscopy is a powerful tool for chemical analysis at a subcellular level, frequently used for imaging lipid dynamics in living cells. We report a high‐power picosecond fiber‐based laser and its application for optical parametric oscillator (OPO) pumping and CARS microscopy. This fiber‐based laser has been carefully characterized. It produces 5 ps pulses with 0.8 nm spectral width at a 1,030 nm wavelength with more than 10 W of average power at 80 MHz repetition rate; these spectral and temporal properties can be slightly modified. We then study the influence of these modifications on the spectral and temporal properties of the OPO. We find that the OPO system generates a weakly spectrally chirped signal beam constituted of 3 ps pulses with 0.4 nm spectral width tunable from 790 to 930 nm optimal for CARS imaging. The frequency doubling unconverted part is composed of 7–8 ps pulses with 0.75 nm spectral width compatible with CARS imaging. We also study the influence of the fiber laser properties on the CARS signal generated by distilled water. In agreement with theory, we find that shorter temporal pulses allow higher peak powers and thus higher CARS signal, if the spectral widths are less than 10 cm?1. We demonstrate that this source is suitable for performing CARS imaging of living cells during several hours without photodamages. We finally demonstrate CARS imaging on more complex aquatic organisms called copepods (micro‐crustaceans), on which we distinguish morphological details and lipid reserves. Microsc. Res. Tech. 77:422–430, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Within the framework of a national National Institute of Physics of Matter (INFM) project, we have realised a two-photon excitation (TPE) fluorescence microscope based on a new generation commercial confocal scanning head. The core of the architecture is a mode-locked Ti:Sapphire laser (Tsunami 3960, Spectra Physics Inc., Mountain View, CA) pumped by a high-power (5 W, 532 nm) laser (Millennia V, Spectra Physics Inc.) and an ultracompact confocal scanning head, Nikon PCM2000 (Nikon Instruments, Florence, Italy) using a single-pinhole design. Three-dimensional point-spread function has been measured to define spatial resolution performances. The TPE microscope has been used with a wide range of excitable fluorescent molecules (DAPI, Fura-2, Indo-1, DiOC(6)(3), fluoresceine, Texas red) covering a single photon spectral range from UV to green. An example is reported on 3D imaging of the helical structure of the sperm head of the Octopus Eledone cirrhosa labelled with an UV excitable dye, i.e., DAPI. The system can be easily switched for operating both in conventional and two-photon mode.  相似文献   

14.
Oliver Trepte 《Scanning》1995,17(3):171-174
An optical spectrometer for the visible range has been developed for the confocal scanning laser microscope (CSLM) Phoibos 1000. The spectrometer records information from a single point or a user-defined region within the microscope specimen. A prism disperses the spectral components of the recorded light over a linear CCD photodiode array with 256 elements. A regulated cooling unit cools the diode array, thereby reducing the detector dark current to a level, which allows integration times of up to 60 s. The spectral resolving power, λ/Δλ, ranges from 400 at λ = 375 nm to 100 at λ = 700 nm. Since the entrance aperture of the spectrometer has the same diameter as the detector aperture of the CSLM, the three-dimensional spatial resolution for spectrometer readings is equivalent to that of conventional confocal scanning, that is, down to 0.2 μm lateral and 0.8 μm axial resolution with an N.A.=1.3 objective.  相似文献   

15.
Fluorescence polarization, particularly fluorescence anisotropy (FA) can be used to characterize the rotation dynamics and interactions of biomolecules. We report here fluorescence polarization microscopy based on a two-photon fluorescence microscope. Two-photon fluorescence excited by a linearly polarized fs laser beam was separated into components of parallel and perpendicular polarization and then recorded simultaneously by two detectors. From the images corresponding to different combinations of the polarization for the excitation and fluorescence photons, images of FA, or polarization difference, can be derived. It is demonstrated that FA microscopy is capable of probing rotational mobility of the fluorescent molecules and their interaction with the surroundings, but displays lower axial resolution than fluorescence intensity images. It is proved that the degraded axial resolution of FA imaging is intrinsic to the current experimental set-up. Artifacts in FA imaging of aligned molecules are also discussed.  相似文献   

16.
A small diameter (600 µm) fused optic fibre imaging bundle was used as a probe to compare fluorescent specimens by direct contact imaging using both a conventional fluorescence microscope and a laser scanning confocal microscope (LSCM) system. Green fluorescent polyester fibres placed on a green fluorescent cardboard background were used to model biological tissue. Axial displacement curves support the hypothesis that pinhole size in the LSCM system reduces the contribution of non‐focal plane light. Qualitative comparison showed that the LSCM system produced superior image quality and contrast over the conventional system. The results indicate that the new LSCM–probe combination is an improvement over conventional fluorescence–probe systems. This study shows the feasibility of employing such a small diameter probe in the investigation of biological function in difficult to access areas.  相似文献   

17.
This article describes x-ray imaging with grazing-incidence microscopes, developed for the experimental program carried out on the Ligne d'Integration Laser (LIL) facility [J. P. Le Breton et al., Inertial Fusion Sciences and Applications 2001 (Elsevier, Paris, 2002), pp. 856-862] (24 kJ, UV-0.35 nm). The design includes a large target-to-microscope (400-700 mm) distance required by the x-ray ablation issues anticipated on the Laser MégaJoule facility [P. A. Holstein et al., Laser Part. Beams 17, 403 (1999)] (1.8 MJ) which is under construction. Two eight-image Kirkpatrick-Baez microscopes [P. Kirkpatrick and A. V. Baez J. Opt. Soc. Am. 38, 766 (1948)] with different spectral wavelength ranges and with a 400 mm source-to-mirror distance image the target on a custom-built framing camera (time resolution of approximately 80 ps). The soft x-ray version microscope is sensitive below 1 keV and its spatial resolution is better than 30 microm over a 2-mm-diam region. The hard x-ray version microscope has a 10 microm resolution over an 800-microm-diam region and is sensitive in the 1-5 keV energy range. Two other x-ray microscopes based on an association of toroidal/spherical surfaces (T/S microscopes) produce an image on a streak camera with a spatial resolution better than 30 microm over a 3 mm field of view in the direction of the camera slit. Both microscopes have been designed to have, respectively, a maximum sensitivity in the 0.1-1 and 1-5 keV energy range. We present the original design of these four microscopes and their test on a dc x-ray tube in the laboratory. The diagnostics were successfully used on LIL first experiments early in 2005. Results of soft x-ray imaging of a radiative jet during conical shaped laser interaction are shown.  相似文献   

18.
Optical modifications to a confocal scanning laser microscope are described which allow simultaneous fluorescence imaging of living specimens excited by ultraviolet (UV)- and visible-wavelength light. Modifications to a Bio-Rad MRC 600 Lasersharp confocal microscope include the introduction of UV-path-specific lenses and a specially designed UV transmitting eyepiece and tube lens. Upon UV excitation these modifications provide similar resolution and field flatness when compared with visible confocal microscopy. The UV-path-specific optics could be adjusted to correct for varying amounts of longitudinal chromatic aberration in commercially available objectives. Eyepiece and tube lenses were chromatically corrected for UV through visible wavelengths to minimize lateral chromatic error. With these modifications, UV-wavelength light may be used to excite ratioing dyes to quantify intracellular ion concentrations, or as an energy source to release caged compounds in a spatially restricted volume, while simultaneously imaging with dyes excited by visible-wavelength light.  相似文献   

19.
A theoretical analysis is presented on how to separate the contributions from individual, simultaneously present fluorophores in a spectrally resolved image. Equations are derived that allow the calculation of the signal‐to‐noise ratio of the estimates for such contributions, given the spectral information on the individual fluorophores, the excitation wavelengths and intensities, and the number and widths of the spectral detection channels. We then ask how such imaging parameters have to be chosen for optimal fluorophore separation. We optimize the signal‐to‐noise ratio or optimize a newly defined ‘figure of merit’, which is a measure of efficiency in the use of emitted photons. The influence of photobleaching on the resolution and on the choice of imaging parameters is discussed, as well as the additional resolution gained by including fluorescence lifetime information. A surprisingly small number of spectral channels are required for an almost optimal resolution, if the borders of these channels are optimally selected. The detailed consideration of photobleaching is found to be essential, whenever there is significant bleaching. Consideration of fluorescence lifetime information (in addition to spectral information) improves results, particularly when lifetimes differ by more than a factor of two.  相似文献   

20.
Wood cell walls fluoresce as a result of UV and visible light excitation due to the presence of lignin. Fluorescence spectroscopy has revealed characteristic spectral differences in various wood types, notably normal and compression wood. In order to extend this method of characterising cell walls we examined the fluorescence lifetime of wood cell walls using TCSPC (Time‐Correlated Single Photon Counting) as a method of potentially detecting differences in lignin composition and measuring the molecular environment within cell walls. The fluorescence decay curves of both normal and compression wood from pine contain three exponential decay components with a mean lifetime of τm = 473 ps in normal wood and 418 ps in compression wood. Lifetimes are spatially resolved to different cell wall layers or cell types where individual lifetimes are shown to have a log‐normal distribution. The differences in fluorescence lifetime observed in pine compression wood compared to normal wood, are associated with known differences in cell wall composition such as increased p‐hydroxyphenyl content in lignin as well as novel deposition of β(1,4)‐Galactan. Our results indicate increased deposition of lignin fluorophores with shorter lifetimes in the outer secondary wall of compression wood. We have demonstrated the usefulness of fluorescence lifetime imaging for characterising wood cell walls, offering some advantages over conventional fluorescence imaging/spectroscopy. For example, we have measured significant changes in fluorescence lifetime resulting from changes to lignin composition as a result of compression wood formation that complement similar changes in fluorescence intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号