首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

This work is focused on the evaluation of the corrosion behaviour of an AA2024-T351/SiC surface composite produced by friction stir processing (FSP). The surfaces composite show a quite homogenous distribution of the SiC particles in the stir zone, together with a significant grain size reduction as Electron Backscatter Diffraction analysis confirms. The corrosion behaviour was evaluated in 3.5 wt-% NaCl solution using electrochemical techniques. The complete study shows that all processed samples have similar corrosion resistance at the stirred region and differ from the base material behaviour. The results indicate that the galvanic coupling metal matrix–SiC particles are less active than the galvanic coupling metal matrix–Cu-rich second phases. Although the initial corrosion resistance of the base aluminium alloy is the worst of all systems studied, for long immersion times the development of corrosion through grain boundaries was found to progressdeeper in the 2024Al/SiC surface produced by FSP.  相似文献   

2.
Friction stir processing (FSP) was utilized to produce surface composites by incorporating nano-sized cerium oxide (CeO2) and silicon carbide (SiC) particles individually and in combined form into the Al5083 alloy matrix. The study signified the role of these reinforcements on microstructure and wear behavior of the resultant surface composite layers. The wear characteristics of the resultant mono and hybrid surface composite layers were investigated using a pin-on-disc wear tester at room temperature. The microstructural observations of FSPed regions and the worn out surfaces were performed by optical and scanning electron microscopy. Considerable grain refinement and uniform distribution of reinforcement particles were achieved inside the nugget zone. All the composite samples showed higher hardness and wear resistance compared to the base metal. Among the composite samples, the hybrid composite (Al5083/CeO2/SiC) revealed the highest wear resistance and the lowest friction coefficient, whereas the Al5083/SiC composite exhibited the highest hardness, i.e., 1.5 times as hard as that of the Al5083 base metal. The enhancement in wear behavior of the hybrid composites was attributed to the solid lubrication effect provided by CeO2 particles. The predominant wear mechanism was identified as severe adhesive in non-composite samples, which changed to abrasive wear and delamination in the presence of reinforcing particles.  相似文献   

3.
颗粒增强铸造铝基复合材料的研究   总被引:6,自引:1,他引:5  
本文探讨了用搅拌铸造法,采用常规的熔炼加工设备和工艺,制造SiC颗粒增强铝基复合材料的可行性;研究了不同SiC含量的复合材料的显微组织;试验表明:复合材料中SiC颗粒分布较为均匀,其力学性能均优越于基体合金,弥散分布的SiC颗粒是复合材料力学性能优异的主要原因。  相似文献   

4.
An aluminium alloy and its composite with dispersed SiC particles made by liquid metallurgy route were extruded under optimized conditions.The properties were characterized in terms of microstructure,hardness and sliding wear behaviour and then compared between the extruded and cast alloys and composites,in order to understand the benefits of composite and extrusion on the alloy.It was observed that composites drastically increased the hardness and the extruded composites further increased this value.The advantage of composites was realized in sliding wear tests.  相似文献   

5.
In this study, friction stir processing (FSP) was employed to develop a composite layer on the surface of as-cast AZ91 magnesium alloy using SiC particles (5 μm and 30 nm). The effects of the rotational and traverse speeds and the FSP pass number on the microstructure and microhardness of the friction stir processed (FSPed) layer with and without SiC particles were investigated. Optical microscopy and scanning electron microscopy (SEM) were employed for microstructural analysis. FSP produces a homogeneous microstructure by eliminating the precipitates near the grain boundaries. The analyses showed that the effects of the rotational and traverse speeds on the microstructure of specimens produced without nano-sized SiC particles are considerable; however, they are negligible in the specimens with particles. While the second FSP pass enhances the microstructure and microhardness of the samples with SiC particles, it has no significant effect on such properties in the samples without SiC particles.  相似文献   

6.
通过搅拌摩擦加工技术将SiC颗粒加入到A356铝合金中制备铝基复合材料,搅拌摩擦加工参数为:旋转速度1800r/min和行进速度127mm/min。基体金属A356铝合金为亚共晶AlSi枝晶组织,而搅拌区的组织与基体金属区不同。共晶Si和SiC颗粒均匀分布于初始铝固溶体中,而经历了剧烈变形的热力影响区的共晶Si和SiC颗粒呈沿旋转方向分散的特征。搅拌区的硬度比基体金属的高,因为在搅拌区存在的缺陷明显减少,共晶Si和SiC均匀分布在其中。  相似文献   

7.
提出了固态复合的概念,并采用两步复合法试验研究了SiC颗粒与纯Al的预复合工艺、预复合块与贫铝7090A1合金液的二次复合工艺以及复合浆料的压铸工艺,成功制备出含SiC体积分数为10%的SiCp7090A1复合材料半固态压铸件。显微组织观察表明,SiC颗粒在所制备的复合材料基体中分布均匀,且与基体合金结合良好。  相似文献   

8.
The present work addresses the production of aluminium based FGM composites by friction based processes, namely FSP and a consumable tool approach. Several strategies were investigated, featuring the use of SiC and alumina reinforcements. These strategies were implemented and surfaces analyzed to evaluate the influence of deposition and processing on particle distribution and homogeneity. Three strategies were studied: a square shaped groove packed with reinforcement particles, the pre-deposition of a uniform layer of particles prior to FSP with a non consumable tool, and the last one consisted of a consumable rod in aluminium drilled with holes placed in different positions along a radial line filled with reinforcing particles. Coatings were examined by optical microscopy, scanning electron microscopy, as well as, hardness testing. The strategies investigated proved to be possible in the production of surface layers reinforced with hard materials by FSP in aluminium based alloys. While the pre-deposition of reinforcements directly on plate surface enables the simplest approach to produce composites by FSP, the packing of reinforcements in grooves can increase the composite layer thickness. The consumable rod approach allows depositing composite layers soundly bonded to the substrate while avoiding FSP tool wear.  相似文献   

9.
Thermal spraying has been used to coat 6082-T6 aluminium alloy with aluminium matrix composites. Mixtures of Al-11Si powder and 20 vol.% SiC and 40 vol.% SiC particles in the powder feeder were used as spraying material. In some conditions, SiC particles were coated with a sol-gel silica coating, which acts as an active barrier enhancing the wettability of the reinforcement by molten aluminium reducing the porosity of the composite coatings and inhibiting the formation of aluminium carbide. Coatings with a reinforcement volume fraction up to 17 vol.% (for 20 vol.% SiC in feeder) and 27 vol.% (for 40 vol.% SiC in feeder) were obtained with porosities below 1.0%. In all cases, the incorporation of sol-gel silica coatings on SiC particles reduced the porosity and increased the reinforcement volume fraction and the hardness of the coatings. The role played by the different spraying parameters has been also studied.  相似文献   

10.
铝基复合材料与铝合金的TLP扩散连接   总被引:4,自引:2,他引:4       下载免费PDF全文
采用TLP扩散连接方法对铝合金与SiC颗粒增强Al基复合材料进行了连接试验研究,应用扫描电镜和能谱分析技术对TLP连接接头进行了微观组织观察和接头区域各元素的浓度分布测试。结果表明,SiC颗粒增强铝基复合材料与铝合金连接接头区域连接界面向铝合金一侧偏移,接头区域溶质原子浓度分布非常不均匀,由于溶质原子扩攻速度以及中间层和母材冶金反应的不同,导致铝基复合材料与铝合金的TLP扩散连接过程存在明显的非对称性。  相似文献   

11.
SiC颗粒尺寸对镍基复合镀层耐磨性和耐蚀性的影响   总被引:1,自引:0,他引:1  
在正交实验基础上,对比研究微米SiC(平均粒径1.5 μm)和纳米SiC(平均粒径20 nm)增强复合镍基镀层的摩擦磨损行为和耐腐蚀性能.通过TEM、SEM、EDX和XRD等手段研究颗粒分散状态以及复合镀层的表面和截面形貌、成分及相结构.采用球-盘滑动摩擦磨损试验机研究复合镀层的耐磨性.电化学阻抗谱测量在3.5%的NaCl水溶液中进行.结果表明:微米级颗粒增强复合镀层可以获得更高的表面硬度,两种增强复合镀层具有相似的摩擦磨损行为.电化学阻抗谱分析表明:SiC颗粒的加入可以提高镀层的耐腐蚀性,且纳米颗粒复合镀层具有更好的耐蚀性.  相似文献   

12.
铝合金表面激光熔覆原位自生TiC增强金属基复合材料涂层   总被引:8,自引:0,他引:8  
以Ti,SiC混合粉末作为预置合金涂层,采用2kW连续Nd:YAG固体激光器进行激光熔覆处理,在6061铝合金表面借助于接触反应法制备原位生成TiC颗粒增强Al-Ti复合材料涂层。试验结果表明:采用适合的激光辐照工艺参数,可获得增强相TiC弥散分布,以Ti-Al金属间化合物及Al过饱和固溶体为主要组成相的复合材料熔覆层组织。TiC颗粒与复合材料基体润湿良好,熔覆层结晶致密,与6061铝合金基材呈良好的冶金,珂明显地改善铝合金的表面性能。  相似文献   

13.
通过化学镀的方法,在铝合金表面成功地制备了Ni-Co-P/SiC复合镀层。对复合镀层的表面形貌、化学成分、晶态结构、硬度进行了表征分析,通过电化学测试对其耐腐蚀性进行了研究。结果表明:SiC纳米微粒起到了提高Ni-Co-P合金镀层硬度的作用,向镀液中加入12 g/L SiC纳米微粒时,复合镀层的硬度达到最大值524HV;Ni-Co-P/SiC复合镀层能增强铝合金材料的耐蚀性能,镀液中SiC微粒的质量浓度为9 g/L时,复合镀层的耐腐蚀性相对最好。  相似文献   

14.
采用真空压力浸透法制备SiCp/AZ91复合材料,研究其显微组织、力学性能和耐磨性。结果表明,SiC颗粒均匀分布于金属基体中,并与基体界面结合良好。Mg17Al12相在SiC颗粒附近优先析出,SiC与AZ91基体的热膨胀系数失配导致高密度位错的产生,加速基体的时效析出。与AZ91合金相比,SiC颗粒的加入提高了复合材料的硬度和抗压强度,这主要是由于载荷传递强化和晶粒细化强化机制。此外,由于SiC具有优异的耐磨性,在磨损过程中形成稳定的支撑面保护基体。  相似文献   

15.
SiCp/AZ61镁基复合材料制备工艺和性能的研究   总被引:2,自引:0,他引:2  
研究了三种不同铸造工艺条件下镁基复合材料的组织结构,并对其硬度进行了测定。结果表明:与全液态铸造法和半固态铸造法相比,搅熔铸造制备的SiCp/AZ61镁基复合材料,其增强相SiC颗粒分布均匀,气孔率较少,是一种较理想的金属基复合材料制备工艺。未增强的AZ61基体镁合金的维氏硬度高于其半固态坯料的维氏硬度;而SiCp/AZ61镁基复合材料的维氏硬度明显高于基体的维氏硬度,并随着SiC颗粒体积分数的增加其复合材料的维氏硬度不断提高。  相似文献   

16.
Microstructure and mechanical properties of SiCp /AA5083 composite fabricated by friction stir welding (FSW) were investigated.The influence of the number of FSW passes on the distribution of SiC particles and mechanical properties in the joint was studied.After one pass,the SiC particles were entangled in the upper side of the stir zone (SZ).However,the particle distribution became more uniform after two passes due to the repeated stirring of the joint.As the SiC particles facilitate the grain refinement in the SZ by the pinning effect,the particle including region has much smaller grain size than the SZ without SiC particles.The SiCp /AA5083 composite region exhibits a Vickers hardness of HV90,which is much higher than the value of HV80 in the SZ produced by FSW without SiC particles.  相似文献   

17.
Abstract

An investigation has been carried out of the effects of tool probe shape and size on the formation of surface composite by uniformly distributing SiC particles into a surface layer of an A1050-H24 aluminium plate through friction stir processing (FSP). Tool probes of three different diameters (3, 5 and 7 mm) and four different shapes (circular with threads, circular without threads, square and triangular) have been used to fabricate the surface layers at rotation speeds of 1500–2250 rev min?1 and a travelling speed of 1·66 mm s?1. The SiC particles were packed into a groove of 3 mm width and 1·5 mm depth cut on the aluminium plate and covered by an aluminium sheet of 2 mm thickness. A rotating tool was plunged into the plate through the cover sheet so that the tip of the probe reached beyond the bottom of the groove. As a result, it was found that the square probe dispersed the SiC particles homogeneously in the nugget zone compared with other probe shapes regardless of the rotation speeds. Furthermore, the distributed particles and also the aluminium matrix grain size became finer by the use of square probe than those of the other shapes. On the other hand, the wear rates of the square and triangular probes were higher than that of circular shape. The worn iron debris from the tool reacted with aluminium matrix and form fine iron aluminides compound dispersed in the nugget zone. The probe size had limited effects on the homogeneity of the SiC particles distribution in the nugget zone; the distribution of SiC particles obtained by triple FSP passes was less homogeneous when the probe size was smaller. Microhardness of the nugget zone was homogeneously increased to a level as high as 60 HV with tool of square probe shape after three passes to be compared with 23 HV of the aluminium matrix beside the nugget zone.  相似文献   

18.
分别采用电子束对中焊、偏束焊技术,研究了Si C颗粒增强铝基复合材料Si Cp/2024与2219铝合金的接头组织及力学性能.结果表明,对中焊时接头易出现Si C增强相的偏聚,同时发生严重的界面反应,生成大量脆性相Al4C3,接头抗拉强度最高为104 MPa.采用偏束焊工艺可以很好地抑制界面反应,通常只在焊缝上部与Si Cp/Al热影响区上部生成少量脆性相Al4C3,接头抗拉强度最高可达131 MPa.试件均断裂在母材界面反应层上,且为明显的脆性断裂.不同工艺下接头横截面硬度分布存在突变区,该区域在Si Cp/2024熔合区附近,该处脆性相Al4C3的生成导致硬度升高.  相似文献   

19.
混合金属基复合材料是重要的工程材料,因为他们比纯铝具有更低的密度、更高的比强度和更好的物理力学性能而广泛应用于汽车、航空航天等方面。研究了混合铝金属基复合材料的力学性能和磨损性能。通过搅拌铸造将云母和SiC颗粒加入到Al 356合金中。采用扫描电子显微镜(SEM)研究样品的显微组织,用能谱分析(EDX)其化学成分。结果表明,所制备的Al/10SiC?3云母复合材料具有较好的强度和硬度。增加复合材料中云母含量能提高复合材料的耐磨性。  相似文献   

20.
开展了挤压加工对 Si Cp/ Al复合材料显微组织和力学性能的实验研究。结果表明 :挤压加工有助于提高 Si C颗粒分布的均匀性 ,挤压棒料中的 Si C颗粒在挤压方向上定向、有序地排列 ,呈现出带状组织的特征 ;挤压加工还可以消除 Si Cp/ Al复合材料毛坯中的显微疏松缺陷 ,改善铝合金基体对 Si C颗粒损伤的容限性能 ,从而大幅度地提高复合材料的强度和塑性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号