首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
In this work a novel ozone detection at room temperature (RT) has been investigated. Two functional materials, ZnO and (W0.9Sn0.1)O3 − x (WS10) oxides, have been synthesized to prepare thick film gas sensors, both used in conventional heated mode as well as at RT assisted by UV irradiation. As a source of light, a light emitting diode (LED) of 400 nm peak wavelength was used. Under typical operating conditions of the UV-LED, the radiation flux density ? over the sensor was of about 5 · 1017 photons/cm2. Powders and films have been characterized by means of TG-DTA, SEM, TEM and XRD. Finally, electrical measurements have been performed on sensing films with the aim to compare conductive properties, surface barrier heights and ozone sensing features with and without UV irradiation. Despite the fact that two types of conventional heated sensors offered quite similar results with respect to ozone sensing, it turned out that, at RT and with the assistance of UV light, ZnO behaved excellently fast detecting ozone at concentrations down to 10 ppb, while for WS10 under the same operating conditions an opposite result was observed, i.e. very low response and long response time.  相似文献   

2.
The sensitive composite material was prepared by loading Pt and La2O3 into ultrafine In2O3 matric material (8 nm) synthesized by microemulsion method. A highly selective ethanol gas sensor was developed based on hot-wire type gas sensor, which was sintered in a bead (0.8 mm in diameter) to cover a platinum wire coil (0.4 mm in diameter). The gas sensor was operated by a bridge electric circuit. The influences of La2O3 and Pt additives on C2H5OH sensing properties of In2O3-based gas sensor were discussed. The addition of La2O3 resulted in a prominent selectivity for C2H5OH, and the addition of Pt improved the response rate to C2H5OH without affecting the sensitivity. The temperature and humidity characteristics of the sensor output were also investigated. The selective sensor had low power consumption, significantly minor humidity and temperature dependence, high selectivity and prominent long-term stability.  相似文献   

3.
Nanocrystalline α-Fe2O3 has been prepared on a large-scale by a facile microwave-assisted hydrothermal route from a solution of Fe(NO3)3·9H2O and pentaerythritol. A systematic study of the morphology, crystallinity and oxidation state of Fe using different characterization techniques, such as transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy was performed. It reveals that nanostructured α-Fe2O3 comprises bundles of nanorods with a rhombohedral crystalline structure. The individual nanorod has 8-10 nm diameter and ∼50 nm length. The as-prepared nanostructured α-Fe2O3 (sensor) gives selective response towards humidity. The sensor shows high sensitivity, fast linear response to change in the humidity with almost 100% reproducibility. The sensor works at room temperature and rejuvenates without heat treatment. The as-prepared nanostructured α-Fe2O3 appears to be a promising humidity sensing material with the potential for commercialization.  相似文献   

4.
Single-phase eskolaite crystalline Cr2 − xTixO3 films (CTO) with a uniform porous microstructure were fabricated via an electrostatic spray assisted vapour deposition (ESAVD) method. The sensing behavior upon exposure to ammonia and ethanol was characterized in a CTO film-based sensor device in terms of response, reproducibility, humidity constraints and sensor stability. The ESAVD process has been shown to be capable of producing CTO films at low temperature (650 °C) and more importantly, it results in a more uniform titanium distribution and better microstructural control than processes based on solid-state chemical reactions. The material with a nominal composition of Cr1.7Ti0.3O3 exhibited the highest sensitivity among the different Cr2 − xTixO3 compositions examined towards ammonia over the temperature range of 200-500 °C with a peak sensitivity of 2.90 at 200 °C. The CTO materials, when used as sensors, also exhibit excellent responses to ethanol concentration in air. The sensitivity was 0.64 for 10 ppm ethanol, 0.85 for 25 ppm, and 0.92 for 50 ppm, respectively.  相似文献   

5.
In this paper nanosized BaTiO3 thick films based gas sensor has been fabricated for liquid petroleum gas (LPG). Doping with different concentrations of metal oxides influenced the sensitivity of BaTiO3 thick films for LPG sensor. We present the characterization of both their structural properties by means of X-ray powder diffraction (XRD) and the electrical characteristics by using gas-sensing properties. X-ray powder diffraction analyses revealed the persistence of cubic phase with grain growth 65 nm. The LPG-sensing properties of BaTiO3 thick films doped with CuO and CdO are investigated. It was found that 10 wt.% CuO: 10 wt.% CdO doped BaTiO3 based LPG sensor shows better sensitivity and selectivity at an operating temperature 250 °C which is an important commercial range for LPG alarm development. Incorporation of 0.3 wt.% Pd doped CuO:CdO:BaTiO3 element shows maximum sensitivity with high cross selectivity to the other gases including CO, H2 and H2S at an operating temperature 225 °C for low concentrations of LPG sensor.  相似文献   

6.
NO was oxidized into NO2 first by injecting ozone into flue gas stream, and then NO2 was absorbed from flue gas simultaneously with SO2 by pyrolusite slurry. Reaction mechanism and products during the absorption process were discussed in the followings. Effects of concentrations of injected ozone, inlet NO, pyrolusite and reaction temperature on NOx/SO2 removal efficiency and Mn extraction rate were also investigated. The results showed that ozone could oxidize NO to NO2 with selectivity and high efficiency, furthermore, MnO2 in pyrolusite slurry could oxidize SO2 and NO2 into MnSO4 and Mn(NO3)2 in liquid phase, respectively. Temperature and concentrations of injected ozone and inlet NO had little impact on both SO2 removal efficiency and Mn extraction rate. Specifically, Mn extraction rate remained steady at around 85% when SO2 removal efficiency dropped to 90%. NOx removal efficiency increased with the increasing of ozone concentration, inlet NO concentration and pyrolusite concentration, however, it remained stable when reaction temperature increased from 20 °C to 40 °C and decreased when the flue gas temperature exceeded 40 °C. NOx removal efficiency reached 82% when inlet NO at 750 ppm, injected ozone at 900 ppm, concentration of pyrolusite at 500 g/L and temperature at 25 °C.  相似文献   

7.
A.B. Bodade 《Vacuum》2008,82(6):588-593
This paper reports the preparation and gas-sensing characteristic of ZnO:TiO2-based hydrogen sulfide (H2S) gas sensor with different mol% of CdO by polymerized complex method. The structural and gas-sensing properties of ZnO:TiO2 materials have been characterized using X-ray diffraction and gas-sensing measurement. The electrical resistance response of the sensor based on the materials was investigated at different operating temperatures and different gas concentrations. The sensor with 10 mol% CdO-doped ZnO:TiO2 shows excellent electrical resistance response toward H2S gas. The cross sensitivity was also checked for reducing gases like CH4, CO and H2 gas. The selectivity and sensitivity of ZnO:TiO2-based H2S gas sensor were improved by the addition of 10 mol% of CdO at an operating temperature of 250 °C.  相似文献   

8.
A new selective Nd(III) sensor has been made by using N,N′-bis(quinoline-2-carboxamido)-4,5-dimethylbenzene (H2L4) as a suitable ionophore. The sensor exhibits Nernstian response to Nd(III) ions in the concentration range of 5.0 × 10− 6 to 1.0 × 10− 2 M. It displays a Nernstian slope of 19.5 ± 0.4 mV/decade in the pH range of 2.9-9.2. The proposed sensor also exhibits a fast response time of < l0 s. The detection limit of the proposed sensor is 4.8 × 10− 6 M, and it can be used over a period of 10 weeks without significant changes in its response. Furthermore, the electrode showed high selectivity toward Nd(III) ion respect to all other lanthanide ions tested. The practical utility of the sensor was demonstrated by using it as an indicator electrode in the potentiometric determination of Nd(III) ions in certified reference material and spiked water samples.  相似文献   

9.
Humidity response of Radio Frequency sputtered MgFe2O4 thin films onto alumina substrate, annealed at 400 °C, 600 °C and 800 °C has been investigated. Crystalline phase formation of thin films annealed at different temperature was analyzed by X-ray Diffraction. A particle/grain like microstructure in the grown thin films was observed by Scanning Electron Microscope and Atomic Force Microscope images. Film thickness for different samples was measured in the range 820-830 nm by stylus profiler. Log R (Ω) response measurement was taken for all thin films for 10-90% relative humidity (% RH) change at 25 °C. Resistance of the film increased from 5.9 × 1010 to 3 × 1012 at 10% RH with increase in annealing temperature from 400 °C to 800 °C. A three-order magnitude, 1012 Ω to 109 Ω drop in resistance was observed for the change of 10 to 90% RH for 800 °C annealed thin film. A good linear humidity response, negligible humidity hysteresis and minimum response/recovery time of 4 s/6 s have been measured for 800 °C annealed thin film.  相似文献   

10.
Ba0.8Sr0.2TiO3/Poly (vinylpyrrolidone) (BST/PVP) composite fibers were successfully synthesized via electrospinning. The ceramic nanofibers were obtained after calcining the composite at 800 °C for 2 h. The morphology and structure of the BST fibers were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results reveal that the as-synthesized BST nanofibers show a diameter of 50-150 nm with the length over 0.1 mm, and a well-defined perovskite crystal structure. The electrical properties of the as-synthesized BST nanofibers were investigated through an impedance-type humidity sensor. The nanofibers exhibited excellent humidity sensing properties at room temperature. The possible sensing mechanism was proposed.  相似文献   

11.
The electrocatalysis of the oxidation of hydrazine, formaldehyde and glucose on a nanoporous Pd-modified TiO2 electrode, prepared by the hydrothermal process, was investigated in 0.1 M NaOH solutions. The electrocatalytic activity of the Pd-modified TiO2 electrode for the electrochemical oxidation of hydrazine, formaldehyde and glucose is characterized by the low onset potentials of −0.80, −0.70 and −0.85 V (vs Ag,AgCl), respectively. Compared to the oxidation of formaldehyde and glucose, the hydrazine oxidation on the Pd-modified TiO2 presents the highest anodic oxidation current densities, showing that the Pd-modified TiO2 electrode is more electro-active for the hydrazine oxidation than for the oxidation of formaldehyde and glucose. Chronoamperograms at different concentrations of hydrazine and formaldehyde showed that the Pd-modified TiO2 electrode is a promising electrochemical sensor for the detection of hydrazine with a sensitivity of 0.554 mA cm−2 mM−1 and a detection limit of 0.023 mM, and for the detection of formaldehyde with a sensitivity of 0.20667 mA cm−2 mM−1 and a detection limit of 0.015 mM. However, it was found from the chronoamperometric responses at various glucose concentrations that a linear plot of the anodic oxidation current density versus glucose concentration developed only in the range of 7-35 mM glucose while an obvious deviation from the linear relationship was observed at both low and large glucose concentrations. Results show that the prepared Pd-modified TiO2 electrode could be applied to the direct liquid (hydrazine, formaldehyde, and glucose) fuel cells as an effective anodic catalyst, in addition to be a promising electrochemical sensor for the detection of hydrazine and formaldehyde.  相似文献   

12.
Ti thin films were anodized in aqueous HF (0.5 wt.%) and in polar organic (0.5 wt.% NH4F + ethylene glycol) electrolytes to form TiO2 nanotube arrays. Ti thin films were deposited on microscope glass substrates and then anodized. Anodization was performed at potentials ranging from 5 V to 20 V for the aqueous HF and from 20 V to 60 V for the polar organic electrolytes over the temperatures range from 0 to 20 °C. The TiO2 nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). It has been observed that anodization of the deposited Ti thin films with aqueous HF solution at 0 °C resulted in nanotube-type structures with diameters in the range of 30-80 nm for an applied voltage of 10 V. In addition, the nanotube-type structure is observed for polar organic electrolyte at room temperature at the anodization voltage higher than 40 V. The volatile organic compound (VOC) sensing properties of TiO2 nanotubes fabricated using different electrolytes were investigated at 200 °C. The maximum sensor response is obtained for carbon tetrachloride. The sensor response is dependent on porosity of TiO2. The highest sensor response is observed for TiO2 nanotubes which are synthesized using aqueous HF electrolyte and have very high porosity.  相似文献   

13.
CdIn2O4 sensor with high sensitivity and excellent selectivity for H2S gas was synthesized by using sol-gel technique. Structural, electrical and gas sensing properties of doped and undoped CdIn2O4 thick films were studied. XRD revealed the single-phase polycrystalline nature of the synthesized CdIn2O4 nanomaterials. Since the resistance change of a sensing material is the measure of its response, selectivity and sensitivity was found to be enhanced by doping different concentrations of cobalt in CdIn2O4 thick films. The sensor exhibits high response and selectivity toward H2S for 10 wt.% Co doped CdIn2O4 thick films. The current-voltage characteristics of 10 wt.% Co doped CdIn2O4 calcined at 650 °C shows one order increase in current with change in the bias voltage at an operating temperature of 200 °C for 1000 ppm H2S gas.  相似文献   

14.
We report complementary results to our previous publication [Dalban-Canassy M, Hilton DK, Van Sciver SW. Influence of the steady background turbulence level on second sound dynamics in He II. Adv Cryo Eng 2006;51:371-8], both of which are aimed at determining the influence of background turbulence on the breakpoint energy of second sound pulses in He II. The apparatus consists of a channel 175 mm long and 242 mm2 in cross section immersed in a saturated bath of He II at 1.7 K. A heater at the bottom end generates both background turbulence, through a low level steady heat flux (up to qs = 2.6 kW/m2), and high intensity square second sound pulses (qp = 100 or 200 kW/m2) of variable duration Δt0 (up to 1 ms). Two superconducting filament sensors, located 25.4 mm and 127 mm above the heater, measure the temperature profiles of the traveling pulses. We present here an analysis of the measurements gathered on the top sensor, and compare them to similar results for the bottom sensor [1]. The strong dependence of the breakpoint energy on the background heat flux previously illustrated is also observed on the top sensor. The present work shows that the ratio of energy received at the top sensor to that at the bottom sensor diminishes with increasing background heat flux.  相似文献   

15.
A sensor microsystem prototype, using copper phthalocyanine thin film as sensitive layer, and dedicated to ozone evaluation, was developed. The methodology implemented is based on cyclic sensor recalibrations by thermal cleaning of the sensitive membrane, and on pollutant concentration quantification according to the kinetics of sensor response. Results of laboratory experiments for various NO2 and O3 concentrations, in the range of 10-200 ppb, illustrate the selectivity of CuPc sensors towards ozone, obtained by our methodology. We have shown that ozone selectivity is especially improved for short time of exposure (few minutes) and for phthalocyanine layer maintained at low temperature (80 °C). For optimal conditions, our microsystem exhibits a threshold lower than 10 ppb, a resolution lower than 10 ppb, and good reproducibility of measurements. Performances obtained in real urban atmosphere are satisfying to ensure real time evaluation of ozone during several days. Long-term stability and the detection of NO2 by associating chemical filters to our microsystem will be also discussed.  相似文献   

16.
Advanced treatment techniques, like ozone, activated carbon and TiO2 in combination with UV, are proposed to improve removal efficiency of micropollutants during wastewater treatment. In a meta-analysis of peer-reviewed literature, we found significantly reduced overall ecotoxicity of municipal wastewaters treated with either ozone (n = 667) or activated carbon (=113), while TiO2 and UV was not yet assessed. As comparative investigations regarding the detoxification potential of these advanced treatment techniques in municipal wastewater are scarce, we assessed them in four separate Gammarus-feeding trials with 20 replicates per treatment. These bioassays indicate that ozone concentrations of approximately 0.8 mg ozone/mg DOC may produce toxic transformation products. However, referred effects are removed if higher ozone concentrations are used (1.3 mg ozone/mg DOC). Moreover, the application of 1 g TiO2/l and ambient UV consistently reduced ecotoxicity. Although activated carbon may remove besides micropollutants also nutrients, which seemed to mask its detoxification potential, this treatment technique reduced the ecotoxicity of the wastewater following its amendment with nutrients. Hence, all three advanced treatment techniques are suitable to reduce the ecotoxicity of municipal wastewater mediated by micropollutants and may hence help to meet the requirements of the European Water Framework Directive.  相似文献   

17.
The nanocrystalline powders of pure and La3+-doped In2O3 with cubic structure were prepared by a simple hydrothermal decomposition route. The structure and crystal phase of the powders were characterized by X-ray diffraction (XRD) and microstructure by transmission electron microscopy (TEM). All the compositions exhibited a single phase, suggesting a formation of solid solution in the concentration of doping investigated. Gas-sensing properties of the sensor elements were tested by mixing a gas in air at static state, as a function of concentration of dopant, operating temperature and concentrations of the test gases. The pure In2O3 exhibited high response towards H2S gas at an operating temperature 150 °C. Doping of In2O3 with La3+ increases its response towards H2S and La3+ (5.0 wt.% La2O3)-doped In2O3 showed the maximum response at 125 °C. The selectivity of the sensor elements for H2S against different reducing gases was studied. The results on response and recovery time were also discussed.  相似文献   

18.
Thin films of polypyrrole (PPY) were prepared by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technology from two matrices: water and dimethylsulfoxide (DMSO). The deposition was carried out using a KrF excimer laser (laser fluence F ranged from 0.1 to 0.6 J cm− 2). This work deals with optimization of two deposition parameters - laser fluence and number of pulses - for both matrices. From the deposition curves, the fluence thresholds, Fth, and maximum growth rates were subsequently determined (water matrix: Fth ~ 0.40-0.45 J cm− 2, maximum growth rate 0.16 nm pulse− 1; DMSO matrix: Fth ~ 0.25-0.30 J cm− 2; maximum growth rate 0.20 nm pulse− 1). The changes in chemical composition of deposited layers were studied by Attenuated Total Reflection Fourier Transform Infrared spectroscopy. Surface morphology was characterized by Atomic Force Microscopy. A discussion is also presented concerning relationships between laser fluence and chemical composition of deposited layers with respect to their potential application in gas sensors. Finally, the response of a sensor with a MAPLE deposited PPY active layer to air humidity is presented.  相似文献   

19.
Titanium dioxide (TiO2) nanofibers were fabricated by electrospinning a hybrid solution, which is a mixture of the TiO2 sol precursor, polymer, and solvent. The structure and gas sensing properties of TiO2 nanofibers were investigated. By calcining at 600 °C, the polymeric components were decomposed and a multi-layered random network structure of TiO2 nanofibers was obtained. Polycrystalline TiO2 nanofibers consist of tetragonal anatase and rutile TiO2 phases. The diameter ranged from 400 nm to 500 nm and the grain size was about 15 nm. The TiO2 nanofibers-based sensor exhibited response to CO concentration as low as 1 ppm at 200 °C.  相似文献   

20.
ZnO films grown by a home-made Aerosol Spray Pyrolysis (ASP) system at 350 °C have shown a characteristic columnar structure with an inhomogeneous layer structure that extends all the way to the surface. Surface morphology studies revealed grain sizes of the order of 80 nm and a highly porous structure which proved catalytic for the performance as gas sensing element. Conductometric ozone response tests have shown that the films of such a structure may be very effective in detecting ultra low ozone concentrations. The lowest ozone limit detected was 16 ppb at room temperature opening up the road for ultra sensitive inexpensive metal oxide ozone detectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号