首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A digital control algorithm for the three-phase sinusoidal voltage inverter with an output LC filter has been developed. To take the transient of the LC filter during the discretization time into consideration, a fourth-order matrix state equation of the current and the voltage on the d-q frame is discretized. Precise discrete equations for the inverter are introduced. Using these equations, a deadbeat controller consisting of a d-g current minor loop and a d-q voltage major loop, with precise decoupling of the d-q components, was developed. The voltage major loop controller assures the sinusoidal output voltage and stabilizes the system. A deadbeat controller is used because both the current minor loop and the voltage major loop can used one sampling response. The validity of these techniques is confirmed by simulation studies. This method is expected to be useful for direct digital control of large-capacity sinusoidal voltage inverters using low-switching-frequency devices  相似文献   

2.
PWM methods to handle time delay in digital control of a UPS inverter   总被引:1,自引:0,他引:1  
With the popularity of micro-processors, digital controllers are widely used in uninterruptible power supply (UPS) inverters. These digital control systems of UPS inverters require a time interval for sampling and computation, which sometimes affects the performance of inverters. In this paper, the problem of time delay in digital control of a UPS inverter is discussed. Then two novel pulsewidth modulation (PWM) methods, the two-polarity PWM method and the asymmetric PWM method, are proposed to handle the time-delay problem. Both of these PWM methods can achieve a wide range of duty ratio between 0.05-0.95, which is independent of inverter model. Furthermore, they are easy to implement using a digital micro-controller. Experimental results are presented in the paper to verify feasibility of the proposed PWM methods.  相似文献   

3.
Power electronic inverters are commonly used for the interfacing of distributed generation systems to the electrical power network. These electronic inverters operate in a current controlled mode to inject unity power factor sinusoidal current into the network. To prevent possible dc current injection, a mains frequency isolation transformer is often employed at the inverter output. This isolation transformer is a costly component. An alternative approach is to use current sensing and control techniques to eliminate the dc current component. One method is to use a current controller to force the output dc current to zero. Current controllers are prone to errors associated with nonlinearity and offsets in the current transducers. This paper considers a novel auto-calibrating dc link current sensing technique that eliminates the errors associated with the current transducer, and helps avoid dc current injection into the grid when using a transformerless grid connect inverter system.  相似文献   

4.
In this paper, a low-cost power control for LCC series-parallel inverters with resonant current mode control for high intensity discharge (HID) lamps is presented. These resonant inverters require controlling the power supplied to the lamp in order to avoid exceeding the maximum lamp power recommended by the lamp manufacturer. The classical control method measures the lamp voltage and current and they are multiplied analogically, obtaining the lamp power consumption measure. This control circuitry results very complex due to the lamp voltage and current wide variations range during ignition and discharge processes. Assuming a regulated input dc voltage (bus voltage) provided by the power factor correction (PFC) pre-regulator and an inverter constant efficiency along the lamp aging, the lamp power consumption may be estimated and regulated properly measuring the inverter average input current. Also, the small-signal analysis performed allows obtaining the small-signal resonant inverter input impedance and studying the connection stability between PFC pre-regulator and inverter. The inverter small-signal analysis has been performed and an electronic ballast prototype for 250-W HPS lamps has been implemented and tested verifying the low-cost lamp power control method proposed.  相似文献   

5.
Several high-performance current control techniques are developed for applications to multilevel high-power voltage source inverters (VSIs). The logical sequence of the design choices is described, resulting in a very robust and reliable control system that allows an adequate switching optimization, excellent dynamic responses, and high accuracy in steady-state operation. The advantages of using various accessible DC potentials are fully exploited. The validity of the proposed schemes has been confirmed by digital simulations involving the generation of five-level voltage waveforms; however, the current control strategies developed can easily be extended to any multilevel inverter structure, even in the case of n-level voltage waveforms and three-phase systems  相似文献   

6.
A novel control method that suppresses oscillations generated when an induction motor is driven by PWM (pulse width modulated) inverters is described. The suppression is done by keeping the power direction constant throughout the period of oscillation of the negative current component of the inverter input current. This period is determined only by the frequency of the PWM signals. Because it is not affected by motor parameters, such as the number of poles or motor capacity, the gains of the regulator in the control system do not have to be adjusted, even if this method is applied to various kinds of induction motor drive systems. Experiments have proven that oscillations can be suppressed regardless of the motor type or speed. This stabilizing control is suitable for general-purpose inverters that drive various types of motors  相似文献   

7.
A New Multilevel Conversion Structure for Grid-Connected PV Applications   总被引:1,自引:0,他引:1  
A novel scheme for three-phase grid-connected photovoltaic (PV) generation systems is presented in this paper. The scheme is based on two insulated strings of PV panels, each one feeding the dc bus of a standard two-level three-phase voltage-source inverter (VSI). The inverters are connected to the grid by a three-phase transformer having open-end windings on the inverter side. The resulting conversion structure performs as a multilevel power active filter (equivalent to a three-level inverter), doubling the power capability of a single VSI with given voltage and current ratings. The multilevel voltage waveforms are generated by an improved space-vector-modulation algorithm, suitable for the implementation in industrial digital signal processors. An original control method has been introduced to regulate the dc-link voltages of each VSI, according to the voltage reference given by a single maximum power point tracking controller. The proposed regulation system has been verified by numerical simulations and experimental tests with reference to different operating conditions.  相似文献   

8.
This paper presents an analysis of Class D inverter when irregular driving patterns are given to the gate drive of the switch devices. The analysis has been carried out with focusing on the waveforms, harmonics, low-frequency components, output power, and equivalent dc resistance, which are numerically analyzed and discussed. Class D inverters with six different Q factors from 0.1 to 20 are analyzed about 2/sup 16/ driving patterns for each Q. Superior four models of the six inverters are built and tested in circuit experiments. The calculated waveforms are compared to the experimental results. Both of them are agreed well in time domain and frequency domain. Analytical results show a possibility of a novel control method with irregular driving patterns. In spite of discontinuous control, the output power or voltage can be strictly changed as if continuous using the selected driving patterns in some ranges.  相似文献   

9.
In most high-performance applications of voltage source pulse-width modulation inverters, current control is an essential part of the overall control system. In this paper, a hysteresis current control technique for a single-phase five-level inverter with flying-capacitor topology is proposed. Logic controls and a programmable logic device are suitable for handling a large number of switches and implementation of state transitions. This method also considers how to improve unbalanced voltages of capacitors using voltage vectors in order to minimize switching losses. The simulation and experimental results describe and verify the current control technique for the inverter.  相似文献   

10.
High-performance, high-frequency inverter systems for UPS (uninterruptible power system) applications cannot be easily realized using conventional hard-switched PWM inverter topologies. Adoption of typical soft-switched inverters such as the resonant DC link inverter, require the use of discrete pulse modulation strategies. New controller structures are necessary to cope with stringent voltage regulation and distortion constraints in the presence of unbalanced and nonlinear loads. A controller that utilizes a load current feedforward strategy with a cost function current regulator to achieve excellent transient performance characteristics is presented. Voltage regulation is ensured using a synchronous frame regulator. Detailed simulation and experimental results verifying the concepts are presented. Although this work focuses on soft-switching inverters, the control concepts can be applied to conventional hard-switching inverters as well  相似文献   

11.
This paper presents a novel control strategy for series and parallel output dual-buck half-bridge inverters (DBHBIs). With the increasing concern of fossil fuel reserves and the environmental aspects, the 2005 International Future Energy Challenge, sponsored by U.S. the Department of Energy and the Institute of Electrical and Electronics Engineers, required that the grid-connected inverter should provide a single-phase utility line with 110–240 V at either 50/60 Hz. The proposed series and parallel output DBHBI can produce those kinds of voltage by series or parallel connection of two inverters and with digital signal processor (DSP) control to meet the aforementioned specifications. The load current of the two inverters at parallel output association and the load voltage of both at series output association can be shared. The waveform quality of the whole output voltage is high at both associations. Stability and relative stability of the inverter are unaffected at the two output associations. Operating principle, control strategy, stability and relative stability, and design guidelines and examples are illustrated. Experimental results of a 1-kVA DSP-based series and parallel output DBHBI at stand-alone mode verify the theoretical analysis. The comparisons between single and double inverter structures show that the proposed inverter is very promising in applications.   相似文献   

12.
文中分析了三态DPM电流滞环控制技术在逆变器中的应用。基于高频脉冲直流环节单向电压源逆变技术设计了三态电流滞环控制零电压开关逆变器,克服了依靠谐振电路实现软开关所带来的结构复杂和控制难度大的缺陷,在工程应用中效果良好。  相似文献   

13.
单相SPWM逆变电源的一种新型控制策略研究   总被引:1,自引:0,他引:1  
深入研究了单相SPWM逆变电源的一种新型控制策略———重复控制,并在M atlab/S imu link软件环境下进行了仿真。仿真结果表明:该控制方法能够很好地抑制谐波,具有很好的鲁棒性。  相似文献   

14.
Complementary current mirror inverters have large bandwidth, small time delay but small gain whereas complementary inverters have high gain but large time delay. Ring oscillators have been realised using a combination of both types of inverter to achieve stable high frequency oscillation. Voltage controlled oscillators were obtained by tuning the frequency of oscillation with supply voltage.<>  相似文献   

15.
This paper presents a new topology for the power injection system that is based on the parallel association of two voltage source inverters. One operates using a quasi-square voltage waveform strategy, and the other operates with a pulsewidth-modulation (PWM)-based strategy. The aims of this topology are to inject the power from the photovoltaic generation system using the quasi-square inverter and to control the current quality using the PWM inverter. The proposal optimizes the system design, permitting the reduction of system losses and an increase of the energy injected into the grid.  相似文献   

16.
A novel method of producing optimum switching functions for the voltage and harmonic control of DC-to-AC bridge inverters using neural networks is presented. Results obtained from an experimental implementation of a neural network-based inverter system are included. The implementation does not depend on any hardware configuration and can be modified without affecting the performance  相似文献   

17.
An accurate nonlinearity compensation technique for voltage source inverter (VSI) inverters is presented in this paper. Because of the nonlinearity introduced by the dead time, turn-on/off delay, snubber circuit and voltage drop across power devices, the output voltage of VSI inverters is distorted seriously in the low output voltage region. This distortion influences the output torque of IM motors for constant V/f drives. The nonlinearity of the inverter also causes 5th and 7th harmonic distortion in the line current when the distributed energy system operates in the grid-connected mode, i.e., when the distributed energy system is parallel to a large power system through the VSI inverter. Therefore, the exact compensation of this nonlinearity in the VSI inverter over the entire range of output voltage is desirable. In this paper, the nonlinearity of VSI inverter output voltage and the harmonic distortion in the line current are analyzed based on an open-loop system and a L-R load. By minimizing the harmonic component of the current in a d-axis and q-axis synchronous rotating reference frame, the exact compensation factor was obtained. Simulations and experimental results in the low frequency and low output voltage region are presented.  相似文献   

18.
An induction motor drive that uses an improved high-frequency resonant DC link inverter is presented. The resonant circuit was systematically analyzed first to establish the criteria for initial current selection, and a circuit to establish the bidirectional initial current was then proposed. The proposed current initialization scheme solves voltage overshoot and zero crossing failure problems in the ordinary resonant DC link inverters. A three-phase 3 kW insulated-gate-bipolar-transistor (IGBT) based 60 kHz resonant link inverter has been constructed and successfully tested with an induction motor drive. The speed control system is implemented using two microprocessors. Experimental results are presented to show superior operation of the proposed resonant DC link inverter drive  相似文献   

19.
针对单相400Hz逆变电源系统的控制特点,引入输出电压瞬时值外环和电感电流内环的双环反馈控制,采用极点配置与PI控制相结合的方法对系统进行了设计,并根据状态空间理论建立了系统数学模型。仿真结果表明,该方案动态响应快、稳态精度高、THD小、带负载能力强。  相似文献   

20.
A circular chain control (3C) strategy for inverters in parallel operation is presented in the paper. In the proposed inverter system, all the modules have the same circuit configuration, and each module includes an inner current loop and an outer voltage loop control. A proportional-integral controller is adopted as the inner current loop controller to expedite the dynamic response, while an H robust controller is adopted to reach the robustness of the multimodule inverter system and to reduce possible interactive effects among inverters. With the 3C strategy, the modules are in circular chain connection and each module has an inner current loop control to track the inductor current of its previous module, achieving an equal current distribution. Simulation results of two-module and a three-module inverter systems with different kinds of loads and with modular discrepancy have demonstrated the feasibility of the proposed control scheme. Hardware measurements are also presented to verify the theoretical discussion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号