首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
添加CaO、V2O5对高频MnZn铁氧体性能的影响   总被引:23,自引:0,他引:23  
制备了高频MnZn功率铁氧体,研究了添加CaO和V2O5对高频MnZn铁氧体性能的影响.结果表明:对于工作频率高于500 kHz的MnZn功率铁氧体,增加CaO的添加量,可提高晶界电阻率,最大程度地降低涡流损耗;适当添加V2O5会形成液相烧结并使晶粒细化,增加晶界,减少晶粒和晶界内的气孔率,提高晶界电阻率,降低材料的损耗.添加0.3?O和0.1%V2O5(质量分数,下同),可以制备出致密、气孔率低和晶粒均匀(粒径3~5 μm)的高频功率铁氧体材料,其起始磁导率约为1500,磁芯损耗约为130 mW/cm3(500 kHz,50 mT,25℃).  相似文献   

2.
王凌峰  雷国莉  颜冲 《材料导报》2017,31(Z2):93-98
Mn Zn铁氧体因具有高磁导率、高饱和磁通密度、低损耗而成为高频磁性元件的首选材料,其高频损耗的降低对开关电源的小型化和高效化有重要影响。介绍了高频Mn Zn铁氧体材料的损耗构成和控制机理,总结了国内外高频Mn Zn铁氧体材料研究和开发的发展现状,并对高频Mn Zn铁氧体材料的发展前景进行了展望。  相似文献   

3.
高频MnZn功率铁氧体烧结工艺研究   总被引:4,自引:4,他引:4  
按照氧化物陶瓷工艺对高频MnZn功率铁氧体烧结工艺条件进行了研究。烧结温度越高,晶粒越大,晶界越薄,电阻率越低,磁芯损耗越大,起始磁导率和烧结密度分别在1240℃和1230℃达到最大值。延长保温时间,可以使晶粒充分生长,晶界变薄,电阻率减小,损耗增大。保温3h后,起始磁导率和烧结密度均可达到最大值。氧分压越低,材料起始磁导率越高,电阻率越小,损耗越大,但氧分压低于5%后烧结密度不再继续增加。  相似文献   

4.
余忠  兰中文 《材料导报》2005,19(4):101-104
简要介绍了MnZn功率铁氧体的研究现状,分析了各种制粉方法,讨论了添加剂和不同烧结方式对MnZn功率铁氧体磁性能的影响.  相似文献   

5.
工艺条件对MnZn功率铁氧体性能的影响   总被引:11,自引:0,他引:11  
研究了粉末体粒度、成型密度和烧结工艺对MnZn功率铁氧体材料性能的影响,指出了组成为Zn0.16Mn0.76Fe2.08O4的材料的最佳工艺条件,得到了与日本TDK公司PC50材料性能相的的功率铁氧体。  相似文献   

6.
添加Ta2O5对MnZn功率铁氧体性能的影响   总被引:1,自引:0,他引:1  
采用氧化物陶瓷工艺制备MnZn功率铁氧体,研究了不同Ta2O5含量对MnZn功率铁氧体微观结构和磁性能的影响. 结果表明:少量Ta2O5的加入可以使铁氧体烧结样品的晶粒尺寸增大,气孔率下降,起始磁导率、饱和磁感应强度和电阻率升高,损耗降低. 而加入过多的Ta2O5会导致异常晶粒长大,气孔率升高,起始磁导率、饱和磁感应强度和电阻率降低,损耗增大. 当Ta2O5含量为0.04wt%时,铁氧体烧结样品的晶粒尺寸大小均匀,气孔率最低,起始磁导率、饱和磁感应强度和电阻率达到最大值,损耗最低.  相似文献   

7.
MnZn功率铁氧体的研究进展及发展趋势   总被引:2,自引:0,他引:2  
介绍了宽温超低损耗、高频低损耗和高温高饱和磁感应强度(Bs)MnZn功率铁氧体材料的研究现状,以及添加剂的种类和制备方法的研究,世界上主要软磁铁氧体公司近几年的最新产品情况,指出了MnZn功率铁氧体的发展趋势.从目前的发展状况来看,应用在中低频的功率MnZn铁氧体材料不但要求在较宽的温度范围内具有较低的损耗,同时要求具有高的起始磁导率和饱和磁感应强度.而对于高频功率MnZn铁氧体材料则继续向高频低损耗发展.  相似文献   

8.
TiO2油基纳米流体的制备和流变性能   总被引:2,自引:0,他引:2  
制备TiO2和掺镧TiO2-变压器油纳米流体,研究了流体的流变行为和电场调控特性.TiO2和掺镧TiO2均为锐钛矿型,平均粒径为18.7 nm.TiO2和掺镧TiO2纳米流体的零场粘度42.4 mPa·s,外观透明,存放六个月不发生沉降.在外加电场的激励下,未掺谰Ti02纳米流体的粘度随着电场强度的增大而减小,而掺镧TiO2纳米流体的粘度随着电场强度的提高而增大,镧的掺杂量为3%时粘度最大增幅为35%.掺镧纳米流体的介电损耗和介电常数明显增大,颗粒界面极化增强是流变性能改善的原因.  相似文献   

9.
Mn洳功率铁氧体磁芯制造生产过程产生的开裂有多种形式存在,生产过程的变化产生了不同的开裂,并且前后关联影响。通过对粉料物理参数、模具设计、和烧结曲线以及装烧方式上进行调整,解决MnZn功率铁氧体磁芯不同的开裂现象。  相似文献   

10.
表面疏水性纳米TiO2颗粒的制备及光催化性能   总被引:3,自引:1,他引:2  
在70℃水解钛酸四丁酯(TBOT)时加入十二烷基硫酸钠(SDS),无需热处理就能得到准球形锐钛矿结构的纳米TiO2.这种TiO2粉具有强疏水性,漂浮于水溶液的表面,可通过过滤手段与溶液分离.应用透射电子显微镜和X射线衍射仪对TiO2粉进行了形貌观察和晶体结构的测定.研究了反应体系pH值的变化对TiO2粉结构的影响.FT-IR光谱证明在酸性条件下SDS分子吸附于TiO2颗粒的表面.颗粒尺寸增大引起Rama峰、紫外吸收峰的红移,表现出量子尺寸效应.在对罗丹明B的光催化降解反应中,表面吸附SDS的TiO2粉显示出很强的光催化活性,在50 min内催化降解了100%罗丹明B.  相似文献   

11.
余忠  兰中文  王京梅 《材料导报》2005,19(Z2):328-329
利用溶胶-凝胶法制备MnZn功率铁氧体粉体,讨论了pH值对溶胶-凝胶转变的影响.粉体经850℃预烧,1200℃低温烧结制备出能工作于3MHz的高频MnZn功率铁氧体.  相似文献   

12.
采用氧化物陶瓷工艺制备MnZn功率铁氧体,研究了SnO2掺杂对MnZn功率铁氧体微观结构及磁性能的影响。结果表明添加适量的SnO2可以有效提高晶粒均匀性和致密度。随着SnO2添加量的增加,起始磁导率先上升后下降,磁损耗先下降后上升。当添加量为0.5%(摩尔分数)时,μi达到最大值,损耗最低。此外,铁氧体损耗最低点所对应的温度随着SnO2掺杂量的增加向低温移动。通过对比一次掺杂和二次掺杂,发现一次掺杂的SnO2主要作用于晶粒内部,二次掺杂的SnO2主要作用于晶界处,而且一次掺杂所获得的样品性能更优。  相似文献   

13.
采用氧化物陶瓷工艺制备了MnZn功率铁氧体.研究了预烧温度对MnZn功率铁氧体烧结活性及磁性能、温度稳定性的影响.结果表明,MnZn功率铁氧体预烧料粉体的活性随预烧温度的升高而降低.预烧料粉体的活性对其烧结样品的微观结构有很大影响.预烧温度在870℃时样品具有最佳的磁性能和温度稳定性.  相似文献   

14.
液相烧结制备高密度R5K MnZn铁氧体磁头材料   总被引:2,自引:2,他引:0  
余忠  兰中文  周媛  郎宏彬 《材料导报》2004,18(3):85-87,26
低熔点氧化物添加剂在烧结时形成液相,可促进MnZn铁氧体磁头材料致密化,提高密度,改善磁性能.采用液相烧结,制备了组成为Mn0.60Zn0.32Fe2.08O4的高密度MnZn铁氧体磁头材料.  相似文献   

15.
We have built coils with MnZn ferrite cores that demonstrate an appreciable giant magnetoelectric effect (GME). Their maximum magnetoelectric (ME) output is as high as 87 V/Oe at tens of kilohertz, which is remarkable for devices without any power supply. Our experimental and theoretical analyses suggest that the GME of the coils originates from $LC$ resonances. Our results show a practical way to design ME devices such as passive high-frequency sensitive magnetic sensors. We have found as well that attention should be paid to $LC$ resonance when performing ME spectral measurements.   相似文献   

16.
SiC纳米/微米粒子表面修饰、涂覆的研究进展   总被引:2,自引:0,他引:2  
回顾了近些年SiC纳米/微米微粒表面修饰、涂覆的研究进展,分析了影响SiC粒子表面修饰、涂覆的主要因素,并进一步论述了该领域现阶段的发展水平及存在的问题,预测了它的发展前景.  相似文献   

17.
纳米TiO2的修饰改性   总被引:5,自引:1,他引:5  
详细介绍了用贵金属沉积、有机染料敏化、过渡离子掺杂、半导体耦合等方法对纳米TiO2进行修饰改性的研究现状,展望了纳米TiO2的光催化应用前景,指出了存在的问题和今后的研制方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号