首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 78 毫秒
1.
鲁氏酵母(S酵母)的耐盐能力抑制了其对高盐稀态酱油风味的改善作用。S3-2酵母是本试验室以S酵母为出发菌株,利用基因组重组技术构建的一株具有高耐盐度的酵母菌株。在YPD发酵培养基中对S3-2酵母进行基础发酵性能研究的结果表明,S3-2比S酵母具有更高的耐盐能力,S酵母能生长的最大盐度为19%,而S3-2酵母在含盐量高达21%的培养基中仍能够良好生长。在含盐量为18%的YPD发酵培养基中,S3-2酵母在提高醇类物质的种类和含量,对提高高盐稀态酱油风味具有重要的意义。  相似文献   

2.
探讨了pH值对碘量法测定Cu2+的影响,认为只有在pH≤1的溶液中进行Cu2+的碘量滴定才能得到准确的结果,终点明显,30min不返蓝。建立了碘量滴定同时测定Cu2+和Fe3+的方法,方法简单、快速、准确。  相似文献   

3.
从防止H2O2分解角度对MgSO4、DTPA和Na2SiO3的适宜用量进行了探讨,对3种漂白助剂在机械浆H2O2漂白中的作用进行了比较,同时对DTPA预处理对H2O2漂白的效果进行了评价。在含有过渡金属离子的碱性H2O2溶液中,3种助剂适宜用量分别为:MgSO4为0.05%~0.1%.DTPA为0.1%-0.5%,Na2SiO3为0.5%~3.0%。Na2SiO3的使用效果明显好于DTPA。两段H2O2漂白的正交实验表明,在影响机械浆H2O2漂白的3种助剂中,Na2SiO3是最显著的影响因素,其次是DTPA。对机械浆进行DTPA预处理可以改善H2O2漂白效果,增加残余H2O2和降低浆料的返黄值.DTPA预处理的适宜用量为0.3%~0.5%.  相似文献   

4.
《Journal of dairy science》2021,104(9):9645-9663
The objective of this study was to examine the effect of isonitrogenous substitution of solvent-extracted soybean meal (SBM) with solvent-extracted canola meal (CM) on enteric CH4 production, ruminal fermentation characteristics (including protozoa), digestion (in situ and apparent total-tract digestibility), N excretion, and milk production of dairy cows. For this purpose, 16 lactating Holstein cows, of which 12 were ruminally cannulated, were used in a replicated 4 × 4 Latin square (35-d periods; 14-d adaptation). The cows averaged (mean ± SD) 116 ± 23 d in milk, 692 ± 60 kg of body weight, and 47.5 ± 4.9 kg/d of milk production. The experimental treatments were control diet (no CM; 0%CM) and diets supplemented [dry matter (DM) basis] with 7.9% CM (8%CM), 15.8% CM (16%CM), or 23.7% CM (24%CM) on a DM basis. The forage:concentrate ratio was 52:48 (DM basis) and was similar among the experimental diets. Canola meal was included in the diet at the expense of SBM and soybean hulls, whereas the percentages of the other diet ingredients were the same. Intake of DM increased linearly, whereas apparent total-tract digestibility of DM, crude protein, neutral detergent fiber, and gross energy (GE) declined linearly as CM inclusion in the diet increased. Total volatile fatty acids concentration and butyrate molar proportion decreased linearly, whereas molar proportion of propionate increased linearly, and that of acetate was unaffected by CM inclusion in the diet. Ruminal ammonia concentration was not affected by inclusion of CM in the diet. Energy-corrected milk (ECM) yield increased linearly (up to 2.2 kg/d) with increasing CM percentage in the diet, whereas milk production efficiency averaged 1.63 kg of ECM/kg of DM intake and was unaffected by CM inclusion in the diet. Daily CH4 production decreased linearly with increasing CM percentage in the diet (489, 475, 463, and 461 g/d for 0%CM, 8%CM, 16%CM and 24%CM diets, respectively). As a consequence, CH4 emission intensity (g of CH4/kg of ECM) also declined linearly by up to 10% as the amount of CM increased in the diet. Methane production also decreased linearly when expressed relative to GE intake (5.7, 5.2, 5.1, and 4.9% for 0%CM, 8%CM, 16%CM and 24%CM diet, respectively). Quantity of manure N excretion was not affected by replacing SBM with CM; however, N excretion shifted from urine to feces as dietary percentage of CM increased, suggesting reduced potential for N volatilization. Results from this study show that replacing SBM with CM as a protein source in dairy cow diets reduced enteric CH4 emissions (g/d, % of GE intake, and adjusted for milk production) and increased milk production. The study indicates that CM can successfully, partially or fully, replace SBM in lactating dairy cow diets, with positive effects on animal productivity and the environment (i.e., less enteric CH4 emission and urinary N excreted). We conclude that compared with SBM, inclusion of CM meal in dairy cow diets can play a key role in reducing the environmental footprint of milk production.  相似文献   

5.
The objective was to measure effects of 3-nitrooxypropanol (3NP) on methane production of lactating dairy cows and any associated changes in digestion and energy and N metabolism. Six Holstein-Friesian dairy cows in mid-lactation were fed twice daily a total mixed ration with maize silage as the primary forage source. Cows received 1 of 3 treatments using an experimental design based on two 3 × 3 Latin squares with 5-wk periods. Treatments were a control placebo or 500 or 2,500 mg/d of 3NP delivered directly into the rumen, via the rumen fistula, in equal doses before each feeding. Measurements of methane production and energy and N balance were obtained during wk 5 of each period using respiration calorimeters and digestion trials. Measurements of rumen pH (48 h) and postprandial volatile fatty acid and ammonia concentrations were made at the end of wk 4. Daily methane production was reduced by 3NP, but the effects were not dose dependent (reductions of 6.6 and 9.8% for 500 and 2,500 mg/d, respectively). Dosing 3NP had a transitory inhibitory effect on methane production, which may have been due to the product leaving the rumen in liquid outflow or through absorption or metabolism. Changes in rumen concentrations of volatile fatty acids indicated that the pattern of rumen fermentation was affected by both doses of the product, with a decrease in acetate:propionate ratio observed, but that acetate production was inhibited by the higher dose. Dry matter, organic matter, acid detergent fiber, N, and energy digestibility were reduced at the higher dose of the product. The decrease in digestible energy supply was not completely countered by the decrease in methane excretion such that metabolizable energy supply, metabolizable energy concentration of the diet, and net energy balance (milk plus tissue energy) were reduced by the highest dose of 3NP. Similarly, the decrease in N digestibility at the higher dose of the product was associated with a decrease in body N balance that was not observed for the lower dose. Milk yield and milk fat concentration and fatty acid composition were not affected but milk protein concentration was greater for the higher dose of 3NP. Twice-daily rumen dosing of 3NP reduced methane production by lactating dairy cows, but the dose of 2,500 mg/d reduced rumen acetate concentration, diet digestibility, and energy supply. Further research is warranted to determine the optimal dose and delivery method of the product.  相似文献   

6.
During recent decades, efforts have been made in several countries to diminish the negative environmental influence of dairy production. The main focus has been on nitrogen and phosphorus. Modern dairy production in Western Europe is often based on imported feed-stuffs, mostly protein-rich feeds. In Sweden at least, it is wished that the use of imported feedstuffs in animal production will decrease due to the risk of contamination with Salmonella and the ban of using GMO crops in Swedish dairy production. An experiment was carried out to investigate whether a lower content of crude protein in the diet would decrease the ammonia release from cow manure and whether a well-balanced diet using only feedstuffs of Swedish origin would maintain milk production. Five treatments were arranged in a Latin square design. Two different protein supplements made of ingredients of Swedish origin were each fed at two protein levels, and a fifth imported commercial protein mix was fed at the higher level. The treatments with low protein levels (13.1 to 13.5%) had a significantly lower milk yield, kilograms of ECM, but, on the other hand the net profit, milk income minus feed cost was nearly the same in all treatments except diet C, which had lower feed cost but also lower net profit due to lower milk yield. The content of urea in milk was higher with diets high in crude protein (17%) content. A decreased protein level in the diets did not influence the content of casein or whey protein, but the commercial concentrate showed a tendency to give lower values than the Swedish mixtures. The low protein diets gave significantly lower ammonia release from manure compared with the high protein diets. There were no production differences between the diets of Swedish feeds compared with the imported control. The readily fermentable beet pulp should have helped cows use the higher N diet more efficiently and increased the response. This gives the rumen microbes a possibility to match the inflow of protein with carbohydrates. Income over feed costs shows that it is possible to compile diets using products of Swedish origin and still be competitive. On the other hand, this structure may change quickly due to altered world market prices.  相似文献   

7.
This study examined the effect of 3-nitrooxypropanol (3-NOP), an investigational substance, on enteric methane emission, milk production, and composition in Holstein dairy cows. Following a 3-wk covariate period, 48 multi- and primiparous cows averaging (± standard deviation) 118 ± 28 d in milk, 43.4 ± 8 kg/d milk yield, and 594 ± 57 kg of body weight were blocked based on days in milk, milk yield, and enteric methane emission and randomly assigned to 1 of 2 treatment groups: (1) control, no 3-NOP, and (2) 3-NOP applied at 60 mg/kg feed dry matter. Inclusion of 3-NOP was through the total mixed ration and fed for 15 consecutive weeks. Cows were housed in a freestall barn equipped with a Calan Broadbent Feeding System (American Calan Inc., Northwood, NH) for monitoring individual dry matter intake and fed ad libitum once daily. Enteric gaseous emissions (methane, carbon dioxide, and hydrogen) were measured using 3 GreenFeed (C-Lock Inc., Rapid City, SD) units. Dry matter intake, cow body weight, and body weight change were not affected by 3-NOP. Compared with the control group, 3-NOP applied at 60 mg/kg feed dry matter decreased daily methane emission, emission yield, and emission intensity by 26, 27, and 29%, respectively. Enteric emission of carbon dioxide was not affected, and hydrogen emission was increased 6-fold by 3-NOP. Administration of 3-NOP had no effect on milk and energy-corrected milk yields and feed efficiency, increased milk fat and milk urea nitrogen concentrations, and increased milk fat yield but had no other effects on milk components. Concentration of C6:0 and C8:0 and the sum of saturated fatty acids in milk fat were increased by 3-NOP. Total trans fatty acids and the sum of polyunsaturated fatty acids were decreased by 3-NOP. In this experiment, 3-NOP decreased enteric methane daily emission, yield, and intensity without affecting dry matter intake and milk yield, but increased milk fat in high-producing dairy cows.  相似文献   

8.
This study investigated effects of high inclusion of reduced-fat corn distillers grains with solubles (RFDG) with or without monensin on utilization and excretion of dietary N, P, and S. The experiment was conducted for 11 wk (2-wk diet adaptation, 9-wk experimental period of data collection) with 36 Holstein cows in a randomized complete block design. Cows were blocked by parity, days in milk, and milk yield and assigned to the following diets: (1) a control diet (CON); (2) CON with RFDG included at 28.8% (dry matter basis) by replacing soybean meal, soyhulls, and supplemental fat and phosphorus (DG); and (3) DG with monensin (Rumensin; Elanco Animal Health, Greenfield, IN) supplemented at a rate of 20 mg/kg of DM offered (DGMon). Contrasts were used to compare CON versus DG and DG versus DGMon. Inclusion of RFDG at 28.8% of dietary DM replacing mainly soybean meal did not change crude protein content (17.6% on a DM basis) but decreased rumen-degradable protein and increased rumen-undegradable protein. In addition, the DG diets increased P (0.48 vs. 0.36%) and S concentrations (0.41 vs. 0.21%; DM basis) compared with the CON diet. As a result, DG versus CON decreased plasma and milk urea N concentrations and urinary N excretion. However, the increase in P concentration when feeding the DG versus CON diet to lactating cows increased P intake, plasma P concentration, and urinary and fecal P excretion without affecting milk P secretion. Intake of S was greater for cows fed the DG versus CON diet, resulting in greater plasma total S and sulfate concentration and urinary and fecal S excretion. However, milk S secretion was not affected by DG compared with CON. Monensin supplementation to the DG diet did not affect N intake, utilization, and excretion except that apparent N digestibility was lower compared with DG. In addition, feeding the DGMon diet did not affect P and S utilization and excretion compared with DG. The study suggests that inclusion of high RFDG in a ration by replacing mainly soybean meal altered N, P, and S utilization and excretion, but monensin supplementation to a high-RFDG diet, overall, had minimal effects on N, P, and S utilization and excretion in lactating dairy cows.  相似文献   

9.
The objectives were to determine effects of graded levels of selenized yeast derived from a specific strain of Saccharomyces cerevisiae (CNCM I-3060) on animal performance and in selenium concentrations in the blood, milk, feces, and urine of dairy cows compared with sodium selenite; and to provide preliminary data on the proportion of selenium as selenomethionine in the milk and blood. Twenty Holstein cows were used in a 5 × 5 Latin square design study in which all cows received the same total mixed rations, which varied only in source or concentration of dietary selenium. There were 5 experimental treatments. Total dietary selenium of treatment 1, which received no added selenium, was 0.15 mg/kg of dry matter, whereas values for treatments 2, 3, and 4, derived from selenized yeast, were 0.27, 0.33, and 0.40 mg/kg of dry matter, respectively. Treatment 5 contained 0.25 mg of selenium obtained from sodium selenite/kg of dry matter. There were no significant treatment effects on animal performance, and blood chemistry and hematology showed few treatment effects. Regression analysis noted significant positive linear effects of increasing dietary selenium derived from selenized yeast on selenium concentrations in the milk, blood, urine, and feces. In addition, milk selenium results indicated improved bioavailability of selenium from selenized yeast, compared with sodium selenite. Preliminary analyses showed that compared with sodium selenite, the use of selenized yeast increased the concentration of selenomethionine in the milk and blood. There was no indication of adverse effects on cow health associated with the use of selenized yeast.  相似文献   

10.
《Journal of dairy science》2021,104(11):11686-11698
This study was conducted to examine the effect of method of diet delivery to dairy cows on enteric CH4 emission, milk production, rumen fermentation, nutrient digestion, N excretion, and manure CH4 production potential. Sixteen lactating cows were used in a crossover design (35-d period) and fed ad libitum twice daily a diet [52:48, forage:concentrate ratio; dry matter (DM) basis] provided as forages and concentrates separately (CF) or as a total mixed ration (TMR). For the CF treatment, concentrates were offered first followed by mixed forages 45 min afterward. Method of diet delivery had no effect on DM intake, but neutral detergent fiber (NDF) intake was greater when the diet was delivered as TMR as compared with CF. Apparent total-tract digestibility of DM, crude protein, and gross energy was slightly (1 percentage unit) lower when the diet was offered as TMR than when offered as CF. In contrast, NDF digestibility was greater when the cows were fed TMR versus CF. Although average daily ruminal pH was not affected by method of diet delivery, daily duration of ruminal pH <5.6 was less when the diet was delivered as TMR as compared with CF (0.9 h/d versus 3.7 h/d). Delivering the diet as TMR increased ruminal total volatile fatty acid and NH3 concentrations, but had no effect on acetate, propionate, or branched-chain volatile fatty acid molar proportions. Yields of milk, milk fat, or milk protein, and milk production efficiency (kg of milk/kg of DM intake or g of N milk/g of N intake) were not affected by the method of diet delivery. Daily production (g/d), yield (% gross energy intake), and emission intensity (g/kg of energy-corrected milk) of enteric CH4 averaged 420 g/d, 4.9%, and 9.6 g/kg and were not affected by diet delivery method. Fecal N output was greater when the diet was delivered as TMR versus CF, whereas urinary N excretion (g/d, % N intake) was not affected. Manure volatile solids excretion and maximal CH4 production potential were not affected by method of diet delivery. Under the conditions of this study, delivering the diet as concentrates and forages separately versus a total mixed ration had no effect on milk production, enteric CH4 energy losses, urinary N, or maximal manure CH4 emission potential. However, feeding the diet as total mixed ration compared with feeding concentrates and forages separately attenuated the extent of postprandial decrease in ruminal pH, which has contributed to improving NDF digestibility.  相似文献   

11.
Fifteen rumen fistulated Holstein cows in late lactation and fed a total mixed ration offered ad libitum were supplemented with Se yeast to provide 0, 11, 20, 30, or 42 mg of supplemental Se/day to test the hypothesis that amounts of Se secreted in milk, excreted in urine and feces, and apparently retained in tissues would increase in direct proportion to Se intake. One-half of the yeast supplement was placed directly into the rumen through the fistula of each cow just before milking in the morning and again in the evening, and estimates of average daily excretion of Se were made using total collections of urine and feces from 25 to 31 d after treatments commenced. Amounts of Se secreted daily in milk and apparently retained in tissues increased linearly with average daily intake of Se. The amount of Se excreted in feces and total excretion of Se in urine plus feces increased curvilinearly with Se intake, such that proportionately less Se was excreted as the amount of Se fed increased. On average, total Se excretion accounted for 66%, Se secretion in milk accounted for 17%, and Se apparently retained in tissues accounted for 17% of total Se intake by cows. Thus, in herds fed large amounts of Se yeast, most of the Se will be excreted and retained on-farm. High concentrations of Se will be found where urine and feces accumulate (e.g., yards and effluent ponds), and effluent management practices must be tailored to avoid environmental issues.  相似文献   

12.
Four lactating dairy cows were used in a balanced 4 x 4 Latin square design to examine the effects of casein infusion in the rumen, duodenum, or both on the intake of red clover-grass silage, chewing behavior, diet digestion, microbial protein synthesis, rumen fermentation, digestion, and passage kinetics, milk production, and milk composition. Duodenal infusion increased eating time, silage intake, rumen neutral detergent fiber pool, yields of milk, protein, and lactose, and concentration of milk protein, and tended to decrease that of milk fat. Ruminal infusion tended to decrease eating time, and increased significantly microbial protein synthesis, rumen ammonia-N concentration, molar proportions of isovalerate and valerate, digestion rate of digestible neutral detergent fiber, passage rate of indigestible neutral detergent fiber, and milk urea content, and decreased rumen neutral detergent fiber pool. Silage intake, and yields of milk, protein, and lactose were highest when casein was simultaneously infused in both sites.  相似文献   

13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号