首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
In this study, we report on the formation of a single-crystalline Ni(2)Ge/Ge/Ni(2)Ge nanowire heterostructure and its field effect characteristics by controlled reaction between a supercritical fluid-liquid-solid (SFLS) synthesized Ge nanowire and Ni metal contacts. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies reveal a wide temperature range to convert the Ge nanowire to single-crystalline Ni(2)Ge by a thermal diffusion process. The maximum current density of the fully germanide Ni(2)Ge nanowires exceeds 3.5 × 10(7) A cm(-2), and the resistivity is about 88 μΩ cm. The in situ reaction examined by TEM shows atomically sharp interfaces for the Ni(2)Ge/Ge/Ni(2)Ge heterostructure. The interface epitaxial relationships are determined to be [Formula: see text] and [Formula: see text]. Back-gate field effect transistors (FETs) were also fabricated using this low resistivity Ni(2)Ge as source/drain contacts. Electrical measurements show a good p-type FET behavior with an on/off ratio over 10(3) and a one order of magnitude improvement in hole mobility from that of SFLS-synthesized Ge nanowire.  相似文献   

2.
Tang W  Dayeh SA  Picraux ST  Huang JY  Tu KN 《Nano letters》2012,12(8):3979-3985
We demonstrate the shortest transistor channel length (17 nm) fabricated on a vapor-liquid-solid (VLS) grown silicon nanowire (NW) by a controlled reaction with Ni leads on an in situ transmission electron microscope (TEM) heating stage at a moderate temperature of 400 °C. NiSi(2) is the leading phase, and the silicide-silicon interface is an atomically sharp type-A interface. At such channel lengths, high maximum on-currents of 890 (μA/μm) and a maximum transconductance of 430 (μS/μm) were obtained, which pushes forward the performance of bottom-up Si NW Schottky barrier field-effect transistors (SB-FETs). Through accurate control over the silicidation reaction, we provide a systematic study of channel length dependent carrier transport in a large number of SB-FETs with channel lengths in the range of 17 nm to 3.6 μm. Our device results corroborate with our transport simulations and reveal a characteristic type of short channel effects in SB-FETs, both in on- and off-state, which is different from that in conventional MOSFETs, and that limits transport parameter extraction from SB-FETs using conventional field-effect transconductance measurements.  相似文献   

3.
Jaewook Jeong 《Thin solid films》2010,518(22):6295-6298
We analyzed the effective channel length variation of hydrogenated amorphous silicon thin-film transistors (TFTs) that have wavy edge source/drain (S/D) electrodes. Edge waviness is frequently observed when narrow electrodes are fabricated by using printing methods. We used hydrogenated amorphous silicon (a-Si:H) TFTs and photolithographically patterned wavy edge S/D electrodes for accurate analysis. From a transmission line method (TLM), we successfully related the channel current variation to the variation of current transfer length (LT_wavy) of the wavy edge S/D electrodes originated from current spreading and geometrical edge waviness effects which can be separately extracted.  相似文献   

4.
A thin-film transistor (TFT) with polycrystalline SiGe/Si stacked channel layer has been proposed for low-voltage applications. For the stacked poly-SiGe/poly-Si channel layer, the resultant 1-μm TFT device can achieve an on/off current ratio above 7 orders and a relatively large on-state current at a low operating voltage, and also cause better transfer characteristics than both the conventional poly-Si and poly-SiGe channel layers. As compared to the poly-Si channel layer, the poly-SiGe channel layer may cause a larger on-state current at a small gate bias of 3 V, due to smaller difference between conduction band and intrinsic level. However, even at a small drain bias of 3 V, the poly-SiGe channel layer leads to an off-state leakage current of about 2 order larger than the poly-Si channel layer, since a smaller energy bandgap may cause more carrier field emission via trap states. As a result, when a poly-SiGe/poly-Si stacked channel layer is employed, the leakage current may be suppressed to a low level as that for the poly-Si channel layer, and the resultant on-state current at a low gate bias voltage can be close to a relatively high level as that for the poly-SiGe channel layer.  相似文献   

5.
Silicon oxynitride films have been grown with thermally excited N2O gas, which has a low toxicity in comparison with other oxynitridation agents. Dependences of reaction rates on excitation temperature and substrate temperature have been investigated by Auger electron and photoelectron spectroscopies. These results show that the thermal excitation of N2O obviously promotes the oxynitridation of the silicon surface, especially the oxidation reaction. At higher substrate temperatures, the nitridation of the silicon surface increases and the oxidation is reduced. By mass analysis of the residual gas in the reaction chamber, it was also found that the thermal excitation of N2O causes N2O to be decomposed into N2 and O. This is consistent with the obtained effect that the thermal excitation of N2O promotes especially the oxidation reaction, because atomic oxygen (O) acts as a strong oxidant.  相似文献   

6.
The first experimental results demonstrating that the carrier mobility in the AlGaN/GaN 2D channel of transistor structures (AlGaN/GaN-HEMT) is correlated with the manner in which the nanomaterial is organized and also with the operation reliability of transistor parameters are presented. It is shown that improving the nature of organization of the nanomaterials in AlGaN/GaN-HEMT structures, evaluated by the multifractal parameter characterizing the extent to which a nanomaterial is disordered (local symmetry breaking) is accompanied by a significant, several-fold increase in the electron mobility in the 2D channel and in the reliability of parameters of transistors fabricated from these structures.  相似文献   

7.
Deep silicon voids, located several hundreds of nm below the Si-SiC interface, were observed in Si(100) crystal after its reaction with C2H2 at 1200 °C. Interface voids are commonly observed during the reaction between Si and carbohydrides, but the proposed mechanisms for the interface voids cannot explain the appearance of the deep Si voids. Based on the experimental results, a formation mechanism for the deep voids is proposed in this letter. The proposed mechanism identifies carbon diffusion into the Si crystal as the initial cause and makes a relationship to the fast cooling during the employed rapid-thermal processing.  相似文献   

8.
We have explored the microstructure and local interface strain in the poly-Si1-xGex/SiO2/Si tri-layer system with ultrathin oxides. High-resolution transmission electron microscopy (HRTEM) and high-resolution X-ray diffraction rocking curves (HR-RC) and two-dimensional reciprocal space mapping (2D-RSM) were the main characterization tools. The poly-Si1-xGex/SiO2/Si structures have x=0, 0.2, and 0.35 for ultrathin oxides (2.0–3.0 nm). The result shows that for the adopted growth process, the poly grain size depends very strongly on the Ge concentration, and it increases with increasing Ge mole fraction. In turn, this increase of the grain size in the poly-Si1-xGex/SiO2/Si reduces the strain in the film, which then affects the interface strain at the lower SiO2/Si interface. In addition, the presence of defects at the SiO2/Si interface was found to be greater for samples with no local interface strain.  相似文献   

9.
Ning Xiao  Jiawen Liu 《Materials Letters》2010,64(16):1776-7937
Ordered bi-phase TiO2 nanowire arrays were simply obtained by heat treating TiO2 nanotube arrays prepared by a two-step anodization method. The nanowire arrays are composed of anatase and rutile phases with uniform diameters around 50 nm. The photocatalysis activities of TiO2 nanowire arrays were characterized by quantifying the degradation of methyl orange solution. And the results indicated that the bi-phase nanowire arrays, especially obtained at 700 °C, showed much higher activity than that of P25 film or anatase TiO2 nanotube array.  相似文献   

10.
采用溶胶-凝胶法制备了WO3/TiO2纳米复合催化剂,通过XRD、IR、UVDRS技术对材料的表面性质与构造、光响应性能进行了表征,并研究了该催化剂作用下光催化甲烷和水生成甲醇的反应性能;考察了煅烧温度、WO3掺杂量对光催化活性的影响,并研究了反应条件对甲醇产量的影响。结果表明:掺入WO3使TiO2光催化活性提高,扩大了光激发波长范围;催化剂煅烧温度为600℃、WO3摩尔分数为3%时,光催化性能最佳;在紫外光照射下,光激发WO3/TiO2表面产生光生空穴,催化甲烷转化为甲醇,甲烷转化率为16.2%,对甲醇的选择性达到76%。  相似文献   

11.
This paper shows for the first time integrated thin film ferroelectric metal-insulator-metal capacitors on silicon with a record high capacitance density above 100 nF/mm2 combined with a breakdown voltage of 90 V and a lifetime exceeding 10 years at 85degC and 5 V. The high capacitance density was obtained by a combination of material optimizations resulting in a dielectric constant of 1600, and stacking of capacitors. The reliability of these ferroelectric capacitors was studied in detail with accelerated lifetime testing. The high performance of the integrated capacitors in this paper shows great potential for applications demanding high capacitance densities combined with electrostatic discharge protection.  相似文献   

12.
13.
ZnO films with c-axis (0002) orientation have been grown on SiO2/Si substrates with an Al2O3 buffer layer by radio frequency magnetron sputtering. Crystalline structures of the films were investigated by X-ray diffraction, atomic force microscopy and scanning electron microscopy. The center frequency of the surface acoustic wave (SAW) device with a 4.8 μm thick Al2O3 buffer layer was measured to be about 408 MHz, which was much higher than that (265 MHz) of ZnO/SiO2/Si structure and approaches that (435 MHz) of ZnO/sapphire. It is a possible way as an alternative for the sapphire substrate for the high frequency SAW device applications, and is also useful to integrate the semiconductor and high frequency SAW devices on the same Si substrate.  相似文献   

14.
Four point probe measurements of the surface electrical resistance at an oxide film-metal interface and at an oxide-film semiconductor interface have shown with Å sensitivity that the direction of the buried interface motion during oxide film growth is opposite in the two cases in accordance with the Mott-Cabrera theory. During the formation of amorphous Al2O3 layers on Al(111) at 300 K, outward film growth occurs due to Al3+ ion transport from the metal into the growing oxide film. For the formation of amorphous SiO2 layers on Si(100) at 300 K, oxygen transport occurs inwardly into the Si lattice as the oxide film forms.  相似文献   

15.
In ejector system using the promising natural refrigerant CO2, the mixing of high-speed two-phase primary flow and suction vapor is crucial in designing an efficient ejector. In this study, the effect of mixing length on ejector system performance was analyzed experimentally. The mixing lengths used were 5 mm, 15 mm, and 25 mm, with constant rectangular cross-section. The experiments were performed for both ejector and conventional expansion systems with and without internal heat exchanger (IHX) at different operating conditions. Based on the experimental results, mixing length had significant effect on entrainment ratio and on magnitude and profile of pressure recovery. The 5 mm and 15 mm types yielded the lowest and highest ejector efficiency and COP in all of the conditions used in this research, respectively. The use of IHX had net positive effect on system performance which verified the results of our previous study. A COP improvement of up to 26% over conventional system was obtained but improper sizing of mixing length lowered the COP by as much as 10%.  相似文献   

16.
The surface of silica particles was modified with polyvinyl pyrrolidone (PVP) through sol–gel process. The different experimental techniques, i.e., thermogravimetric analysis (TGA and DTG), nitrogen adsorption, scanning electron microscopy (SEM), laser diffraction analysis (LDA), fourier transform spectroscopy (FTIR) are used to characterize the pure non-functionalized and functionalized silicas containing different amount of PVP. It was shown that PVP-modified silica samples have well developed porous structure; the values of specific surface area for PVP-modified silicas are in the range of 140–264 m2 g−1. While the non-functionalized silica shows the low surface area (SBET = 40 m2 g−1). The BJH analysis showed that PVP can be used as an effective agent to increase an average pore size and total pore volume. The results indicate that PVP functionalized silicas show a potential as effective adsorbents for bilirubin removal compared to other available adsorbents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号