首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retail buildings have a potential for both short‐term (customer) and long‐term (occupational) exposure to indoor pollutants. However, little is known about volatile organic compound (VOC) concentrations in the retail sector and influencing factors, such as ventilation, in‐store activities, and store type. We measured VOC concentrations and ventilation rates in 14 retail stores in Texas and Pennsylvania. With the exception of formaldehyde and acetaldehyde, VOCs were present in retail stores at concentrations well below health guidelines. Indoor formaldehyde concentrations ranged from 4.6 ppb to 67 ppb. The two mid‐sized grocery stores in the sample had the highest levels of ethanol and acetaldehyde, with concentrations up to 2.6 ppm and 92 ppb, respectively, possibly due to the preparation of dough and baking activities. Indoor‐to‐outdoor concentration ratios indicated that indoor sources were the main contributors to indoor VOC concentrations for the majority of compounds. There was no strong correlation between ventilation and VOC concentrations across all stores. However, increasing the air exchange rates at two stores led to lower indoor VOC concentrations, suggesting that ventilation can be used to reduce concentrations for some specific stores.  相似文献   

2.
Indoor air quality was characterized in 10 recently built energy‐efficient French schools during two periods of 4.5 days. Carbon dioxide time‐resolved measurements during occupancy clearly highlight the key role of the ventilation rate (scheduled or occupancy indexed), especially in this type of building, which was tightly sealed and equipped with a dual‐flow ventilation system to provide air refreshment. Volatile organic compounds (VOCs) and inorganic gases (ozone and NO2) were measured indoors and outdoors by passive techniques during the occupied and the unoccupied periods. Over 150 VOC species were identified. Among them, 27 species were selected for quantification, based on their occurrence. High concentrations were found for acetone, 2‐butanone, formaldehyde, toluene, and hexaldehyde. However, these concentrations are lower than those previously observed in conventional school buildings. The indoor/outdoor and unoccupied/occupied ratios are informative regarding emission sources. Except for benzene, ozone, and NO2, all the pollutants in these buildings have an indoor source. Occupancy is associated with increased levels of acetone, 2‐butanone, pentanal, butyl acetate, and alkanes.  相似文献   

3.
The formaldehyde emission rates from building and furniture materials in 24 student rooms were measured using a passive sampling method parallel to a monitoring of indoor and outdoor concentrations. This passive tool represents an interesting alternative to standard dynamic methods as it is easier to implement for field investigation. Although the indoor formaldehyde concentrations (21.3 μg m−3 on average) are at a medium level, consistent with earlier published results, the recorded emission rates are globally low (from 1 to 15 μg m−2 h−1) except for the high emission of beds identified in one building (87.3 μg m−2 h−1 on average). Data analysis revealed that the emissions released from furniture and building materials are the main contributions to the indoor formaldehyde concentrations with 45 and 43% on average. The high formaldehyde levels in rooms are mainly explained by the rise of formaldehyde emissions from indoor materials with temperature although the buildings and the furniture were older than 7 years. Basing on the data of emission rates, outdoor concentrations and air exchange rates, a one compartment mass balance model was used to calculate indoor concentrations. A good agreement was found between the predictions of the model and the measured indoor concentrations. This methodology could lead to the definition of arrangements for the efficient reduction of indoor formaldehyde levels.  相似文献   

4.
This study characterized indoor volatile organic compounds (VOCs) and investigated the effects of the dwelling characteristics, building materials, occupant activities, and environmental conditions on indoor VOC concentrations in 40 dwellings located in Melbourne, Australia, in 2008 and 2009. A total of 97 VOCs were identified. Nine VOCs, n‐butane, 2‐methylbutane, toluene, formaldehyde, acetaldehyde, d‐limonene, ethanol, 2‐propanol, and acetic acid, accounted for 68% of the sum of all VOCs. The median indoor concentrations of all VOCs were greater than those measured outdoors. The occupant density was positively associated with indoor VOC concentrations via occupant activities, including respiration and combustion. Terpenes were associated with the use of household cleaning and laundry products. A petroleum‐like indoor VOC signature of alkanes and aromatics was associated with the proximity of major roads. The indoor VOC concentrations were negatively correlated (P < 0.05) with ventilation. Levels of VOCs in these Australian dwellings were lower than those from previous studies in North America and Europe, probably due to a combination of an ongoing temporal decrease in indoor VOC concentrations and the leakier nature of Australian dwellings.  相似文献   

5.
Indoor air quality of new apartment buildings, which is known to cause Sick Housing Syndrome, has become a major concern among apartment residents as well as construction companies in Korea. Recently, the Indoor Air Quality Management Act, a regulation that limits concentration levels of formaldehyde and five volatile organic compounds in new apartment buildings, has been implemented. In this study, the effects of ventilation and decomposing agents were investigated and compared, which could be used at the pre-occupancy stage as solutions to high VOCs concentration levels in new apartment buildings. Six housing units were investigated under different conditions to assess the extent of the improvement in indoor air quality. The results demonstrate that ventilation is an effective way to control indoor air pollution caused by VOCs emissions, and the effect of decomposing agents on improving indoor air quality depends on the types of VOCs.  相似文献   

6.
Volatile organic compounds (VOC) in office buildings originate from multiple sources, such as outdoor air, building materials., occupants, office supplies, and office equipment. Many of the VOC found in office buildings are also present in environmental tobacco smoke (ETS), e.g., benzene, toluene, formaldehyde. Measurements made to date in office buildings have been interpreted by some to imply that the contributions of ETS to VOC exposures in office buildings are small. We have made a first order estimate of the contributions of ETS to VOC concentrations based on the VOC content of ETS and a time-dependent mass-balance model. Four different ventilation-infiltration scenarios were modelled for a typical office building. The results indicate that ETS can contribute significantly to total indoor levels of VOC in office buildings, even under moderate ventilation conditions. Ranges of concentrations for three of the four modelled scenarios substantially overlapped measured ranges of the compounds in office buildings. Average daytime concentrations of benzene from ETS, for example, for three of the four modelled scenarios, ranged from 2.7 to 6.2 μg m?3, compared to reported measurements of 1.4 to 8.1 μg m?3 for four office buildings. Under a “worst reasonable” case scenario, the average modelled ETS-contributed concentration of benzene was 33.9 μg m?3 for a 40-hour work week.  相似文献   

7.
This study measured air exchange rates, indoor concentrations of aldehydes and volatile organic compounds (VOCs), and radioactivity levels at 19 temporary houses in different temporary housing estate constructed in Minamisoma City following the Great East Japan Earthquake. The 19 surveyed houses represented all of the companies assigned to construct temporary houses in that Minamisoma City. Data were collected shortly after construction and before occupation, from August 2011 to January 2012. Mean air exchange rates in the temporary houses were 0.28/h, with no variation according to housing types and construction date. Mean indoor concentrations of formaldehyde, acetaldehyde, toluene, ethylbenzene, m/p‐xylene, o‐xylene, styrene, p‐dichlorobenzene, tetradecane, and total VOCs (TVOCs) were 29.2, 72.7, 14.6, 6.35, 3.05, 1.81, 7.29, 14.3, 8.32, and 901 μg/m3, respectively. The levels of acetaldehyde and TVOCs exceeded the indoor guideline (48 μg/m3) and interim target (400 μg/m3) in more than half of the 31 rooms tested. In addition to guideline chemicals, terpenes (α‐pinene and d‐limonene) and acetic esters (butyl acetate and ethyl acetate) were often detected in these houses. The indoor radiation levels measured by a Geiger–Müller tube (Mean: 0.22 μSv/h) were lower than those recorded outdoors (Mean: 0.42 μSv/h), although the shielding effect of the houses was less than for other types of buildings.  相似文献   

8.
9.
Lars E. Ekberg 《Indoor air》1994,4(3):189-196
The indoor concentrations of contaminants originating from outdoor sources have been measured and calculated under transient conditions. The results show that contaminants that are supplied to an office building via the ventilation system can reach considerably high concentration levels. The indoor/outdoor concentration ratio and time lag are dependent on the air change rate. In buildings with low air change rates the indoor concentration variations are smoothed out compared to buildings with high air change rates. The results from the theoretical model are compared to the results from both laboratory and field measurements and the model is verified for well mixed conditions in a 20 m3 test chamber. The model can be used to simulate different control strategies for reduction of indoor contaminant concentrations related to outdoor sources. One such control strategy is based on reduction of the outdoor air change rate during periods with peak outdoor contaminant concentrations.  相似文献   

10.
Previous research has shown that indoor benzene levels in homes with attached garages are higher than homes without attached garages. Exhaust ventilation in attached garages is one possible intervention to reduce these concentrations. To evaluate the effectiveness of this intervention, a randomized crossover study was conducted in 33 Ottawa homes in winter 2014. VOCs including benzene, toluene, ethylbenzene, and xylenes, nitrogen dioxide, carbon monoxide, and air exchange rates were measured over four 48‐hour periods when a garage exhaust fan was turned on or off. A blower door test conducted in each garage was used to determine the required exhaust fan flow rate to provide a depressurization of 5 Pa in each garage relative to the home. When corrected for ambient concentrations, the fan decreased geometric mean indoor benzene concentrations from 1.04 to 0.40 μg/m3, or by 62% (P<.05). The garage exhaust fan also significantly reduced outdoor‐corrected geometric mean indoor concentrations of other pollutants, including toluene (53%), ethylbenzene (47%), m,p‐xylene (45%), o‐xylene (43%), and carbon monoxide (23%) (P<.05) while having no impact on the home air exchange rate. This study provides evidence that mechanical exhaust ventilation in attached garages can reduce indoor concentrations of pollutants originating from within attached garages.  相似文献   

11.
Asian dust storms (ADS) originating from the arid deserts of Mongolia and China are a well-known springtime meteorological phenomenon throughout East Asia. The ventilation systems in office utilize air from outside and therefore it is necessary to understand how these dust storms affect the concentrations of PM2.5 and PM10 in both the indoor and outdoor air. We measured dust storm pollution particles in an office building using a direct-reading instrument (PC-2 Quartz Crystal Microbalance, QCM) that measured particle size and concentration every 10 min for 1 h, three times a day. A three-fold increase in the concentrations of PM2.5 and PM10 in the indoor and outdoor air was recorded during the dust storms. After adjusting for other covariates, autoregression models indicated that PM2.5 and PM10 in the indoor air increased significantly (21.7 μg/m3 and 23.0 μg/m3 respectively) during dust storms. The ventilation systems in high-rise buildings utilize air from outside and therefore the indoor concentrations of fine and coarse particles in the air inside the buildings are significantly affected by outside air pollutants, especially during dust storms.  相似文献   

12.
Apte MG  Fisk WJ  Daisey JM 《Indoor air》2000,10(4):246-257
Higher indoor concentrations of air pollutants due, in part, to lower ventilation rates are a potential cause of sick building syndrome (SBS) symptoms in office workers. The indoor carbon dioxide (CO2) concentration is an approximate surrogate for indoor concentrations of other occupant-generated pollutants and for ventilation rate per occupant. Using multivariate logistic regression (MLR) analyses, we evaluated the relationship between indoor CO2 concentrations and SBS symptoms in occupants from a probability sample of 41 U.S. office buildings. Two CO2 metrics were constructed: average workday indoor minus average outdoor CO2 (dCO2, range 6-418 ppm), and maximum indoor 1-h moving average CO2 minus outdoor CO2 concentrations (dCO2MAX). MLR analyses quantified dCO2/SBS symptom associations, adjusting for personal and environmental factors. A dose-response relationship (p < 0.05) with odds ratios per 100 ppm dCO2 ranging from 1.2 to 1.5 for sore throat, nose/sinus, tight chest, and wheezing was observed. The dCO2MAX/SBS regression results were similar.  相似文献   

13.
The effect on indoor air quality of an air purifier based on photocatalytic oxidation (PCO) was determined by different measuring techniques: sensory assessments of air quality made by human subjects, Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and chromatographic methods (Gas Chromatography/Mass Spectrometry and High-Pressure Liquid Chromatography with UV detection). The experiment was conducted in a simulated office, ventilated with 0.6 h−1, 2.5 h−1 and 6 h−1, in the presence of additional pollution sources (carpet, chipboard and linoleum). At the lowest air change rate, additional measurements were made with no pollution sources present in the office. All conditions were tested with the photocatalytic air purifier turned on and off. The results show that operation of the air purifier in the presence of pollutants emitted by building materials and furniture improves indoor air quality, as documented by sensory assessments made by human subjects. It also reduces concentrations of many chemical compounds present in the air as documented by the PTR-MS technique. For the lowest ventilation, results from measurements using the chromatographic methods have similar tendency, however many of the 50 compounds that were targeted for analysis were not detected at all, independent of whether the purifier was on or off. For the two conditions with higher ventilation the results were inconclusive.  相似文献   

14.
The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM2.5 were made in the outdoor and indoor environment of each NC. The average indoor PM1 and PM2.5 concentrations were found to be 181.77 μg m 3 and 454.08 μg m 3 respectively, while the corresponding outdoor values were 11.04 μg m 3 and 32.19 μg m 3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. It was found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.  相似文献   

15.
The aim of this study was to identify determinants of aldehyde and volatile organic compound (VOC) indoor air concentrations in a sample of more than 140 office rooms, in the framework of the European OFFICAIR research project. A large field campaign was performed, which included (a) the air sampling of aldehydes and VOCs in 37 newly built or recently retrofitted office buildings across 8 European countries in summer and winter and (b) the collection of information on building and offices’ characteristics using checklists. Linear mixed models for repeated measurements were applied to identify the main factors affecting the measured concentrations of selected indoor air pollutants (IAPs). Several associations between aldehydes and VOCs concentrations and buildings’ structural characteristic or occupants’ activity patterns were identified. The aldehyde and VOC determinants in office buildings include building and furnishing materials, indoor climate characteristics (room temperature and relative humidity), the use of consumer products (eg, cleaning and personal care products, office equipment), as well as the presence of outdoor sources in the proximity of the buildings (ie, vehicular traffic). Results also showed that determinants of indoor air concentrations varied considerably among different type of pollutants.  相似文献   

16.
《Building and Environment》2004,39(2):153-164
This research aims to clarify the effects and indoor environmental characteristics of natural and mechanical hybrid air-conditioning systems in office buildings during intermediate seasons and to obtain design data. Natural and mechanical hybrid air conditioning is an air-conditioning system that utilizes natural ventilation and mechanical air-conditioning systems to improve the quality of the indoor thermal and air environment, and to reduce energy consumption. This report first categorizes the available natural ventilation conditions and estimates the amount of natural ventilation available in a model building. Furthermore, based on the concept of task-ambient air conditioning, after controlling the average temperature in the task zone to a target air conditioning temperature (26°C), changes in the outdoor temperature/humidity and the inflow rate, and the indoor environment and amount of cool heat input were studied with changes in the size of the natural vent using three-dimensional Computational Fluid Dynamics (CFD) analysis. The results of these studies indicated that natural ventilation at temperatures lower than the indoor temperature effectively covered the lower indoor task zone through negative buoyancy, which enabled energy-saving air conditioning in the task zone.  相似文献   

17.
We reviewed 47 documents published 1967–2019 that reported measurements of volatile organic compounds (VOCs) on commercial aircraft. We compared the measurements with the air quality standards and guidelines for aircraft cabins and in some cases buildings. Average levels of VOCs for which limits exist were lower than the permissible levels except for benzene with average concentration at 5.9 ± 5.5 μg/m3. Toluene, benzene, ethylbenzene, formaldehyde, acetaldehyde, limonene, nonanal, hexanal, decanal, octanal, acetic acid, acetone, ethanol, butanal, acrolein, isoprene and menthol were the most frequently measured compounds. The concentrations of semi-volatile organic compounds (SVOCs) and other contaminants did not exceed standards and guidelines in buildings except for the average NO2 concentration at 12 ppb. Although the focus was on VOCs, we also retrieved the data on other parameters characterizing cabin environment. Ozone concentration averaged 38 ppb below the upper limit recommended for aircraft. The outdoor air supply rate ranged from 1.7 to 39.5 L/s per person and averaged 6.0 ± 0.8 L/s/p (median 5.8 L/s/p), higher than the minimum level recommended for commercial aircraft. Carbon dioxide concentration averaged 1315 ± 232 ppm, lower than what is permitted in aircraft and close to what is permitted in buildings. Measured temperatures averaged 23.5 ± 0.8°C and were generally within the ranges recommended for avoiding thermal discomfort. Relative humidity averaged 16% ± 5%, lower than what is recommended in buildings.  相似文献   

18.
《Energy and Buildings》2004,36(3):273-279
The design of ventilation performance of air-conditioning systems in large commercial and office buildings is quite established. However, it is not the same with the designs of air-conditioning systems in most residential buildings. Split system air-conditioning units are commonly employed in residential buildings in the tropics due to their convenience in terms of energy conservation, aesthetics, flexibility, acoustic performance and ease of operation. Such units are also popular among small offices, shopping complex and even as supplementary air-conditioning units beyond normal office-hours in large commercial and office buildings. This paper presents findings from a recent study of the ventilation performance and indoor air quality (IAQ) in a master bed room of a condominium unit in Singapore, employed with a split system air-conditioning unit. The attached bathroom is equipped with an exhaust fan, whose operation and its impact on the resulting ventilation characteristics was also studied. Four adults occupied the room throughout the course of the experiments. It was observed that the carbon dioxide level in the bed room can exceed 2000 ppm without the exhaust fan in about 2 h. The operation of the exhaust fan quickly lowered the level of carbon dioxide to about 1000 ppm. The findings suggest the need to design for ventilation provision in split system air-conditioning units.  相似文献   

19.
Ultraviolet photocatalytic oxidation (UVPCO) systems for removal of volatile organic compounds (VOCs) from air are being considered for use in office buildings. Here, we report an experimental evaluation of a UVPCO device with tungsten oxide modified titanium dioxide (TiO2) as the photocatalyst. The device was challenged with complex VOC mixtures. One mixture contained 27 VOCs characteristic of office buildings and another comprised 10 VOCs emitted by cleaning products, in both cases at realistic concentrations (low ppb range). VOC conversion efficiencies varied widely, usually exceeded 20%, and were as high as approximately 80% at about 0.03 s residence time. Conversion efficiency generally diminished with increased airflow rate, and followed the order: alcohols and glycol ethers > aldehydes, ketones, and terpene hydrocarbons > aromatic and alkane hydrocarbons > halogenated aliphatic hydrocarbons. Conversion efficiencies correlated with the Henry's law constant more closely than with other physicochemical parameters. An empirical model based on the Henry's law constant and the gas-phase reaction rate with hydroxyl radical provided reasonable estimates of pseudo-first order photocatalytic reaction rates. Formaldehyde, acetaldehyde, acetone, formic acid and acetic acid were produced by the device due to incomplete mineralization of common VOCs. Formaldehyde outlet/inlet concentration ratios were in the range 1.9-7.2. PRACTICAL IMPLICATIONS: Implementation of air cleaning technologies for both VOCs and particles in office buildings may improve indoor air quality, or enable indoor air quality levels to be maintained with reduced outdoor air supply and concomitant energy savings. One promising air cleaning technology is ultraviolet photocatalytic oxidation (UVPCO) air cleaning. For the prototype device evaluated here with realistic mixtures of VOCs, conversion efficiencies typically exceeded the minimum required to counteract predicted VOC concentration increases from a 50% reduction in ventilation. However, the device resulted in the net generation of formaldehyde and acetaldehyde from the partial oxidation of ubiquitous VOCs. Further development of the technology is needed to eliminate these hazardous air pollutants before such a UVPCO device can be deployed in buildings.  相似文献   

20.
Sampling and analytical methods for gas- and particulate-phase polycylic aromatic hydrocarbons (PAH) in indoor air were evaluated in a controlled field study. Using 12-h, 25-m3 samples, gas-phase PAH were collected on XAD-4 resin and analyzed by GC-MS, and particulate-phase PAH were collected in filters and analyzed for by HPLC with fluorescence detection. Tests were conducted in homes and office buildings without active combustion sources and with gas stoves, wood stoves and cigarette smoking as controlled sources. Indoor concentrations, outdoor concentrations and air-exchange rates were simultaneously measured. The precisions of the concentrations were evaluated using collocated sample pairs collected indoors and outdoors. Net emission rates were calculated for the gas-phase PAH. Net emissions of these compounds were measured in buildings without active combustion sources. Environmental tobacco smoke was identified as a significant source of both gas- and particulate-phase PAH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号