首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract Abstract This paper presents formaldehyde and volatile organic compounds (VOC) concentrations, potential sources and impact factors in 100 homes. The 24‐h average formaldehyde concentration in 37 homes exceeded the good class of the Hong Kong Indoor Air Quality Objectives (HKIAQO), whereas the total VOCs concentration in all homes was lower than the HKIAQO. Compared to other East Asian cities, indoor formaldehyde and styrene in Hong Kong was the highest, reflecting that the homes in Hong Kong were more affected by household products and materials. The formaldehyde concentration in newly built apartments was significantly higher than that in old buildings, whereas no relationship between the concentration and the building age was found for VOCs. There was no difference for formaldehyde and toluene between smoking and non‐smoking homes, suggesting that cigarette smoking was not the major source of these two species. Homes of a couple with a child had higher formaldehyde and acetic acid concentrations, while homes with more than three people had higher concentrations of 1‐butanol, heptane and d‐limonene. When shoes were inside the homes, heptane, acetic acid, nonane and styrene concentrations were statistically higher than that when shoes were out of the homes. Furthermore, higher levels of 1,2,4‐trimethylbenzene, styrene, nonane and heptane were found in gas‐use families rather than in electricity‐use homes.  相似文献   

2.
Many volatile organic compounds (VOCs) are classified as known or possible carcinogens, irritants, and toxicants, and VOC exposure has been associated with the onset and exacerbation of asthma. This study characterizes VOC levels in 126 homes of children with asthma in Detroit, Michigan, USA. The total target VOC concentration ranged from 14 to 2274 μg/m3 (mean = 150 μg/m3; median = 91 μg/m3); 56 VOCs were quantified; and d‐limonene, toluene, p, m‐xylene, and ethyl acetate had the highest concentrations. Based on the potential for adverse health effects, priority VOCs included naphthalene, benzene, 1,4‐dichlorobenzene, isopropylbenzene, ethylbenzene, styrene, chloroform, 1,2‐dichloroethane, tetrachloroethene, and trichloroethylene. Concentrations varied mostly due to between‐residence and seasonal variation. Identified emission sources included cigarette smoking, solvent‐related emissions, renovations, household products, and pesticides. The effect of nearby traffic on indoor VOC levels was not distinguished. While concentrations in the Detroit homes were lower than levels found in other North American studies, many homes had elevated VOC levels, including compounds that are known health hazards. Thus, the identification and control of VOC sources are important and prudent, especially for vulnerable individuals. Actions and policies to reduce VOC exposures, for example, sales restrictions, improved product labeling, and consumer education, are recommended.  相似文献   

3.
This study characterized indoor volatile organic compounds (VOCs) and investigated the effects of the dwelling characteristics, building materials, occupant activities, and environmental conditions on indoor VOC concentrations in 40 dwellings located in Melbourne, Australia, in 2008 and 2009. A total of 97 VOCs were identified. Nine VOCs, n‐butane, 2‐methylbutane, toluene, formaldehyde, acetaldehyde, d‐limonene, ethanol, 2‐propanol, and acetic acid, accounted for 68% of the sum of all VOCs. The median indoor concentrations of all VOCs were greater than those measured outdoors. The occupant density was positively associated with indoor VOC concentrations via occupant activities, including respiration and combustion. Terpenes were associated with the use of household cleaning and laundry products. A petroleum‐like indoor VOC signature of alkanes and aromatics was associated with the proximity of major roads. The indoor VOC concentrations were negatively correlated (P < 0.05) with ventilation. Levels of VOCs in these Australian dwellings were lower than those from previous studies in North America and Europe, probably due to a combination of an ongoing temporal decrease in indoor VOC concentrations and the leakier nature of Australian dwellings.  相似文献   

4.
In this study, the impact factors of temperature, relative humidity (RH), air exchange rate, and volatile organic compound (VOC) properties on the VOC (toluene, n-butyl acetate, ethylbenzene, and m,p-xylene) specific emission rates (SERs) and concentrations from wooden flooring were investigated by chamber test for 8 days. The tested wood in this study is not common solid wood, but composite wood made of combined wood fibers. The experiments were conducted in a stainless-steel environmental test chamber coated with Teflon. The experimental results within 8 days of testing showed that, when the temperature increased from 15 to 30 °C, the VOC SERs and concentrations increased 1.5–129 times. When the RH increased from 50% to 80%, the VOC concentrations and SERs increased 1–32 times. When the air change rate increased from 1 to 2 h−1, the VOC concentrations decreased 9–40%, while the VOC SERs increased 6–98%. The relations between the boiling points of the VOCs and each of the normalized VOC SERs and concentrations were linear with negative slopes. The relations between the vapor pressures of the VOCs and each of the normalized VOC SERs and concentrations were linear with positive slopes. At 15 °C, RH50%, the relations between the diffusivities of VOCs and each of the normalized VOC equilibrium SERs and concentrations were linear with a positive slope.  相似文献   

5.
Source apportionment of ambient volatile organic compounds in Hong Kong   总被引:8,自引:0,他引:8  
Volatile organic compounds (VOCs) were measured at four stations with different environments in Hong Kong (HK) during two sampling campaigns. Positive matrix factorization was applied to characterize major VOC sources in HK. Nine sources were identified, and the spatial and seasonal variations of their contributions were derived. The most significant local VOC sources are vehicle and marine vessel exhausts or liquefied petroleum gas (LPG) at different stations. Vehicle- and marine vessel-related sources accounted for 2.9-12.7 ppbv in 2002-2003 and increased to 4.3-15.2 ppbv in 2006-2007. Different from the emission inventory, solvent-related sources only contributed 11- 19% at both sampling campaigns. Therefore, emission control from transport sector should be prioritized to alleviate ambient local VOC levels. Additionally, the contribution of aged VOC, which roughly represents contributions from regional and super-regional transport, also showed moderate increase during the four years, indicating cooperation with environmental authorities in the Pearl River Delta and beyond should be strengthened.All the anthropogenic sources contribute most to Yuen Long and least to Tap Mun. However, Tap Mun exhibited different trends in comparison with the other three stations, especially for sources of vehicle and marine vessel exhausts, LPG and paint solvents. When the local source contributions were incorporated with wind data to derive the directional dependences of sources, we may conclude that the rapid development of Yantian Container Terminal, the associated emissions from marine vessels around the Terminal and the on-site activities were likely responsible for the distinct VOC features at Tap Mun. The current impact from the Terminal is mainly concentrated in the northeastern corner of HK; however, it has the potential threat to other locations if the Terminal continues to expand in such a rapid speed in the coming years. More stringent VOC control measures on activities related to the operation of the Terminal is therefore highly recommended.  相似文献   

6.
The emissions of volatile organic compounds (VOCs) from building materials may significantly contribute to indoor air pollution, and VOCs have been associated with odor annoyance and adverse health effects. Wood materials together with coatings are commonly used indoors for furniture and large surfaces such as walls, floors, and ceilings. This leads to high surface-to-volume ratios, and therefore, these materials may participate remarkably to the VOC levels of indoor environment. We studied emissions of VOCs and carbonyl compounds from pinewood (Pinus sylvestris) boards of 10% and 16% moisture contents (MC) with three paints using small-scale test chambers (27 L). The emissions from uncoated pinewood and paints (on a glass substrate) were tested as references. The 28-day experiment showed that the VOC emissions from uncoated pinewood were lower from sample with 16% MC. Painted pinewood samples showed lower emissions compared to paints on glass substrate. Additionally, paints on 16% MC pinewood exhibited lower emissions than on drier 10% MC wood. The emissions from painted pinewood samples were dominated by paint-based compounds, but the share of wood-based compounds increased over time. However, we noticed differences between the paints, and wood-based emissions were clearly higher with the most permeable paint.  相似文献   

7.
Alaska Native children experience high rates of respiratory infections and conditions. Household crowding, indoor smoke, lack of piped water, and poverty have been associated with respiratory infections. We describe the baseline household characteristics of children with severe or chronic lung disease participating in a 2012–2015 indoor air study. We monitored indoor PM2.5, CO2, relative humidity %, temperature, and VOCs and interviewed caregivers about children's respiratory symptoms. We evaluated the association between reported children's respiratory symptoms and indoor air quality indicators using multiple logistic regression analysis. Compared with general US households, study households were more likely overcrowded 73% (62%–82%) vs 3.2% (3.1%–3.3%); had higher woodstove use as primary heat source 16% (9%–25%) vs 2.1% (2.0%–2.2%); and higher proportion of children in a household with a smoker 49% (38%–60%) vs 26.2% (25.5%–26.8%). Median PM2.5 was 33 μg/m3. Median CO2 was 1401 ppm. VOCs were detectable in all homes. VOCs, smoker, primary wood heat, and PM2.5>25 μg/m3 were associated with higher risk for cough between colds; VOCs were associated with higher risk for wheeze between colds and asthma diagnosis. High indoor air pollutant levels were associated with respiratory symptoms in household children, likely related to overcrowding, poor ventilation, woodstove use, and tobacco smoke.  相似文献   

8.
PM2.5 (particle with an aerodynamic diameter less than 2.5 µm) was measured in different microenvironments of Hong Kong (including one urban tunnel, one Hong Kong/Mainland boundary roadside site, two urban roadside sites, and one urban ambient site) in 2003. The concentrations of organic carbon (OC), elemental carbon (EC), water-soluble ions, and up to 40 elements (Na to U) were determined. The average PM2.5 mass concentrations were 229 ± 90, 129 ± 95, 69 ± 12, 49 ± 18 µg m− 3 in the urban tunnel, cross boundary roadside, urban roadside, and urban ambient environments, respectively. Carbonaceous particles (sum of organic material [OM] and EC) were the dominant constituents, on average, accounting for ∼ 82% of PM2.5 emissions in the tunnel, ∼ 70% at the three roadside sites, and ∼ 48% at the ambient site, respectively. The OC/EC ratios were 0.6 ± 0.2 and 0.8 ± 0.1 at the tunnel and roadside sites, respectively, suggesting carbonaceous aerosols were mainly from vehicle exhausts. Higher OC/EC ratio (1.9 ± 0.7) occurred at the ambient site, indicating contributions from secondary organic aerosols. The PM2.5 emission factor for on-road diesel-fueled vehicles in the urban area of Hong Kong was 257 ± 31 mg veh− 1 km− 1, with a composition of ∼ 51% EC, ∼ 26% OC, and ∼ 9% SO4=. The other inorganic ions and elements made up ∼ 11% of the total PM2.5 emissions. OC composed the largest fraction (∼ 51%) in gasoline and liquid petroleum gas (LPG) emissions, followed by EC (∼ 19%). Diesel engines showed higher emission rates than did gasoline and LPG engines for most pollutants, except for V, Br, Sb, and Ba.  相似文献   

9.
Although significant progress has been made in understanding the sources and chemistry of indoor volatile organic compounds (VOCs) during the past decades, much is unknown about the role of humans in indoor air chemistry. In the spring of 2014, we conducted continuous measurements of VOCs using a proton transfer reaction mass spectrometer (PTR‐MS) in a university classroom. Positive matrix factorization (PMF) of the measured VOCs revealed a ‘human influence’ component, which likely represented VOCs produced from human breath and ozonolysis of human skin lipids. The concentration of the human influence component increased with the number of occupants and decreased with ventilation rate in a similar way to CO2, with an average contribution of 40% to the measured daytime VOC concentration. In addition, the human skin lipid ozonolysis products were observed to correlate with CO2 and anticorrelate with O3, suggesting that reactions on human surfaces may be important sources of indoor VOCs and sinks for indoor O3. Our study suggests that humans can substantially affect VOC composition and oxidative capacity in indoor environments.  相似文献   

10.
Hotel housekeepers represent a large, low-income, predominantly minority, and high-risk workforce. Little is known about their exposure to chemicals, including volatile organic compounds (VOCs). This study evaluates VOC exposures of housekeepers, sources and factors affecting VOC levels, and provides preliminary estimates of VOC-related health risks. We utilized indoor and personal sampling at two hotels, assessed ventilation, and characterized the VOC composition of cleaning agents. Personal sampling of hotel staff showed a total target VOC concentration of 57 ± 36 µg/m3 (mean ± SD), about twice that of indoor samples. VOCs of greatest health significance included chloroform and formaldehyde. Several workers had exposure to alkanes that could cause non-cancer effects. VOC levels were negatively correlated with estimated air change rates. The composition and concentrations of the tested products and air samples helped identify possible emission sources, which included building sources (for formaldehyde), disinfection by-products in the laundry room, and cleaning products. VOC levels and the derived health risks in this study were at the lower range found in the US buildings. The excess lifetime cancer risk (average of 4.1 × 10−5) still indicates a need to lower exposure by reducing or removing toxic constituents, especially formaldehyde, or by increasing ventilation rates.  相似文献   

11.
In contrast to Cr+ 3, Cr+ 6 is carcinogenic and allergenic. Although Cr+ 6 can occur naturally, it is thought that most soil Cr+ 6 is anthropogenic, however, the extent of Cr+ 6 in the background environment is unknown. Cr+ 6-containing chromite ore processing residue (COPR) from chromate manufacture was deposited in numerous locations in Jersey City (JC), New Jersey. In the 1990's, significantly elevated concentrations of total Cr (Cr+ 6 + Cr+ 3) were found in house dust near COPR sites. We undertook a follow-up study to determine ongoing COPR exposure. We compared Cr+ 6 in house dust in JC to selected background communities with no known sources of Cr+ 6. Samples were collected from living areas, basements and window wells. Cr+ 6 was detected in dust from all JC and background houses. In the JC homes, the mean (± SD) Cr+ 6 concentration for all samples was 3.9 ± 7.0 μg/g (range: non-detect-90.4 μg/g), and the mean Cr+ 6 loading was 5.8 ± 15.7 μg/m2 (range: non-detect-196.4 μg/m2). In background homes, the mean Cr+ 6 concentrations of all samples was 4.6 ± 7.8 μg/g, (range, 0.05-56.6 μg/g). The mean loading was 10.0 ± 27.9 μg/m2 (range, 0.22-169.3 μg/m2). There was no significant difference between Cr+ 6 dust concentrations in Jersey City and background locations. Stratification by sample location within houses and sampling method gave similar results. Samples exceeding 20 μg/g were obtained only from single wood surfaces in different homes. Lower concentrations in window well samples suggests transport from outside is not the major source of indoor Cr+ 6. Landscaping and groundcover may influence indoor Cr+ 6. There appears to be a widespread low level background of Cr+ 6 that is not elevated in Jersey City homes despite its historic COPR contamination. It is possible that house dust, in general, is a source of Cr+ 6 exposure with potential implications for persistence of chromium allergic contact dermatitis.  相似文献   

12.
Exposure to elevated levels of certain volatile organic compounds (VOCs) in households has been linked to deleterious health effects. This study presents the first large-scale investigation of VOC levels in 169 energy-efficient dwellings in Switzerland. Through a combination of physical measurements and questionnaire surveys, we investigated the influence of diverse building characteristics on indoor VOCs. Among 74 detected compounds, carbonyls, alkanes, and alkenes were the most abundant. Median concentration levels of formaldehyde (14 μg/m3), TVOC (212 μg/m3), benzene (<0.1 μg/m3), and toluene (22 μg/m3) were below the upper exposure limits. Nonetheless, 90% and 50% of dwellings exceeded the chronic exposure limits for formaldehyde (9 μg/m3) and TVOC (200 μg/m3), respectively. There was a strong positive correlation among VOCs that likely originated from common sources. Dwellings built between 1950s and 1990s, and especially, those with attached garages had higher TVOC concentrations. Interior thermal retrofit of dwellings and absence of mechanical ventilation system were associated with elevated levels of formaldehyde, aromatics, and alkanes. Overall, energy-renovated homes had higher levels of certain VOCs compared with newly built homes. The results suggest that energy efficiency measures in dwellings should be accompanied by actions to mitigate VOC exposures as to avoid adverse health outcomes.  相似文献   

13.
Current design models for ultraviolet photocatalytic oxidation (UV-PCO) devices often assume that the air contains only one volatile organic compound (VOC) species or all the VOCs in the air can be treated on a non-interacting basis. However, trace-level multiple VOCs co-exist in most indoor environments. This paper assesses the significance of interference effects among different VOCs for indoor applications by full-scale “pull-down” experiments assisted with model simulations. Multiple versus single VOC tests were performed on selected groups of compounds under low concentration levels. Removal efficiency for each compound was calculated. It was found that the interference effect among test VOCs were generally small in the 2-VOC and 3-VOC mixture tests performed on toluene, ethylbenzene, octane, decane and dodecane with initial concentration of approximate 1 mg/m3 for each compound. However, in the 16 VOC mixture test, the interference effect among different VOCs became quite obvious, and compounds with lower removal efficiency in the single compound test appeared to also have relatively lower efficiency and more obvious delay period in the initial reaction. The L–H model appears to be able to account for this effect if reaction rate constants can be accurately estimated. Results, although limited, indicate that interference between multiple VOCs may not be neglected for the PCO reactor for indoor applications where the number of VOCs species is large and the TVOC concentration is high.  相似文献   

14.
The purpose of this study was to investigate the concentrations of volatile organic compounds (VOCs) in different indoor microenvironments of residential homes and hostels in an academic institute, in New Delhi, during March–May 2011. Eleven VOCs (aromatic and halogenated) were assessed. Sampling and analytical procedure were based on National Institute for Occupational Safety and Health (NIOSH) standard method. The lifetime cancer and non‐cancer risk were calculated for targeted VOCs using US Environmental Protection Agency guidelines. The mean concentrations of ∑ VOCs (sum of monitored VOCs) and individual VOC were found to be higher indoors as compared to outdoors at both types of premises. Indoor to outdoor (I/O) ratios of the targeted VOCs exceeded 1.0, suggesting the significant presence of indoor sources. Strong correlations between I/O concentrations of VOCs in the current study suggest the presence of common sources. Factor analysis (FA) was used for source evaluation separately at two premise types. The estimated lifetime cancer risks in the current study for all occupants at both premises exceeded 10?6.  相似文献   

15.
Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs, and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady‐state multitracer system, and 7‐day VOC measurements were collected using passive samplers in both living areas and basements. A walk‐through survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52/h, respectively, and had strong and opposite seasonal trends, for example, AERs were highest in residences during the summer, and highest in basements during the winter. Airflows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right‐skewed, for example, 90th percentile benzene, toluene, naphthalene, and limonene concentrations were 4.0, 19.1, 20.3, and 51.0 μg/m3, respectively; maximum concentrations were 54, 888, 1117, and 134 μg/m3. Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline‐powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements.  相似文献   

16.
In indoor environments with high levels of air pollution, it is desirable to remove major sources of emissions to improve air quality. In order to identify the emission sources that contribute most to the concentrations of indoor air pollutants, we used passive flux samplers (PFSs) to measure emission rates of carbonyl compounds and volatile organic compounds (VOCs) from many of the building materials and furnishings present in a room in a reinforced concrete building in Tokyo, Japan. The emission flux of formaldehyde from a desk was high (125 μg/m2/h), whereas fluxes from a door and flooring were low (21.5 and 16.5 μg/m2/h, respectively). The emission fluxes of toluene from the ceiling and the carpet were high (80.0 and 72.3 μg/m2/h, respectively), whereas that from the flooring was low (9.09 μg/m2/h). The indoor and outdoor concentrations of formaldehyde were 61.5 and 8.64 μg/m3, respectively, and those of toluene were 43.2 and 17.5 μg/m3, respectively. The air exchange rate of the room as measured by the perfluorocarbon tracer (PFT) method was 1.84/h. Taking into consideration the area of the emission sources, the carpet, ceiling, and walls were identified as the principal emission sources, contributing 24%, 20%, and 22% of the formaldehyde, respectively, and 22%, 27%, and 14% of the toluene, respectively, assuming that the emission rate from every major emission sources could be measured. In contrast, the door, the flooring, and the desk contributed little to the indoor levels of formaldehyde (1.0%, 0.54%, and 4.1%, respectively) and toluene (2.2%, 0.31%, and 0.85%, respectively).  相似文献   

17.
Ambient VOCs samples were collected at three locations (PolyU campus (PU), Kwun Tong (KT), Hok Tsui (HT)) in Hong Kong during the periods of November 2000-February 2001 and June 2001-August 2001. Also the concentrations of VOCs in Cross Harbor tunnel in Hong Kong were obtained in order to determine the vehicular sources of VOCs. Toluene was the most abundant VOC detected in Hong Kong. At the PU station, which is close to a main road, the concentrations of most VOCs were higher in summer than in winter. However, at the background location HT, the concentrations of all VOCs except tetrachloroethene were higher in winter than in summer. Regional physical dispersion/transportation and mixing depth may be the reasons for higher VOC concentrations in winter at HT. The BTEX (benzene:toluene:ethylbenzene:xylene) ratios of PU and KT during winter period were (1.9:10.1:1.0:1.8) and (1.9:10.4:1.0:1.5), and (0.9:8.3:1.0:2.2) and (0.8:29.6:1.0:1.8) for summer season, respectively. The xylene/ethylbenzene (X/E) ratio was used to assess the relative age of the air parcels in this study. The concentrations of VOCs in the atmosphere in Hong Kong were mainly affected by direct emissions from vehicles, evaporation of fuels, photochemical reactions and few industrial emissions. The BTEX ratio in the tunnel was 2:10.4:1:3.2. The BTEX ratios at PU and KT during the winter period were similar to that in tunnel (except for xylenes). The X/E ratio in the tunnel was higher than that in the ambient air. This indicated that the freshly emitted xylenes in the tunnel decayed at different rates from OH-oxidation in the atmosphere. Good BTEX correlations (r>0.8) were found at PU and KT in winter (**P<0.01). Vehicular exhaust was the dominant source at PU and KT stations, and less evaporation of fuel or additive occurred at low temperature in winter. Diurnal variations of mean BTEX concentrations at the roadside monitoring station (PU) showed two peaks associated with traffic density and vehicle type.  相似文献   

18.
Abstract Occupants of office buildings are exposed to low concentrations of complex mixtures of volatile organic compounds (VOCs) that encompass a number of chemical classes and a broad range of irritancies. “Sick building syndrome” (SBS) is suspected to be related to these exposures. Using data from 22 office areas in 12 California buildings, seven VOC exposure metrics were developed and their ability to predict self-reported SBS irritant symptoms of office workers was tested. The VOC metrics were each evaluated in a multivariate logistic regression analysis model adjusted for other risk factors or confounders. Total VOCs and most of the other metrics were not statistically significant predictors of symptoms in crude or adjusted analyses. Two metrics were developed using principal components (PC) analysis on subsets of the 39 VOCs. The Irritancy/PC metric was the most statistically significant predictor of adjusted irritant symptoms. The irritant potencies of individual compounds, highly correlated nature of indoor VOC mixtures, and probable presence of potent, but unmeasured, VOCs were variously factored into this metric. These results, which for the first time show a link between low level VOC exposures from specific types of indoor sources to SBS symptoms, require confirmation using data sets from other buildings.  相似文献   

19.
Cao JJ  Lee SC  Chow JC  Cheng Y  Ho KF  Fung K  Liu SX  Watson JG 《Indoor air》2005,15(3):197-204
Six residences were selected (two roadside, two urban, and two rural) to evaluate the indoor-outdoor characteristics of PM(2.5) (aerodynamic diameter <2.5 microm) carbonaceous species in Hong Kong during March and April 2004. Twenty-minute-averaged indoor and outdoor PM(2.5) concentrations were recorded by DustTrak samplers simultaneously at each site for 3 days to examine diurnal variability of PM(2.5) mass concentrations and their indoor-to-outdoor (I/O) ratios. Daily (24-h average) indoor/outdoor PM(2.5) samples were collected on pre-fired quartz-fiber filters with battery-powered portable mini-volume samplers and analyzed for organic and elemental carbon (OC, EC) by thermal/optical reflectance (TOR) following the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol. The average indoor and outdoor concentrations of 24 h PM(2.5) were 56.7 and 43.8 microg/m(3), respectively. The short-term PM(2.5) profiles indicated that the penetration of outdoor particles was an important contributor to indoor PM(2.5), and a household survey indicated that daily activities were also sources of episodic peaks in indoor PM(2.5). The average indoor OC and EC concentrations of 17.1 and 2.8 microg/m(3), respectively, accounted for an average of 29.5 and 5.2%, respectively, of indoor PM(2.5) mass. The average indoor OC/EC ratios were 5.8, 9.1, and 5.0 in roadside, urban, and rural areas, respectively; while average outdoor OC/EC ratios were 4.0, 4.3, and 4.0, respectively. The average I/O ratios of 24 h PM(2.5), OC, and EC were 1.4, 1.8, and 1.2, respectively. High indoor-outdoor correlations (r(2)) were found for PM(2.5) EC (0.96) and mass (0.81), and low correlations were found for OC (0.55), indicative of different organic carbon sources indoors. A simple model implied that about two-thirds of carbonaceous particles in indoor air are originated from outdoor sources. PRACTICAL IMPLICATIONS: Indoor particulate pollution has received more attentions in Asia. This study presents a case study regarding the fine particulate matter and its carbonaceous compositions at six residential homes in Hong Kong. The characteristics and relationship of atmospheric organic and elemental carbon were discussed indoors and outdoors. The distribution of eight carbon fractions was first reported in indoor samples to interpret potential sources of indoor carbonaceous particles. The data set can provide significant scientific basis for indoor air quality and epidemiology study in Hong Kong and China.  相似文献   

20.
The effect of wet film thickness on VOC emissions from a finishing varnish   总被引:1,自引:0,他引:1  
Finishing varnishes, a typical type of oil-based varnishes, are widely used to shine metal, wood trim and cabinet surfaces in Hong Kong. The influence of wet film thickness on volatile organic compound (VOC) emissions from a finishing varnish was studied in an environmental test chamber. The varnish was applied on an aluminium foil with three different wet film thickness (35.2, 69.9 and 107.3 microm). The experimental conditions were 25.0 degrees C, 50.0% relative humidity (RH) with an air exchange rate of 0.5 h(-1). The concentrations of the major VOCs were monitored for the first 10 h. The air samples were collected by canisters and analysed by gas chromatography/mass selective detector (GC/MSD). Six major VOCs including toluene, chlorobenzene, ethylbenzene, m,p-xylene, o-xylene and 1,3,5-trimethylbenzene were identified and quantified. Marked differences were observed for three different film thicknesses. VOC concentrations increased rapidly during the first few hours and then decreased as the emission rates declined. The thicker the wet film, the higher the VOC emissions. A model expression included an exponentially decreasing emission rate of varnish film. The concentration and time data measured in the chamber were used to determine the parameters of empirical emission rate model. The present work confirmed that the film thickness of varnish influenced markedly the concentrations and emissions of VOCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号