首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many assumptions must be made about thermal zoning and interzonal airflow for modelling the performance of buildings. This is particularly important for solar homes, which are subjected to high levels of periodic solar heat gains in certain zones. The way in which these passive solar heat gains are distributed to other zones of a building has a significant effect on predicted energy performance, thermal comfort and optimal design selection. This article presents a comprehensive sensitivity analysis that quantifies the effect of thermal zoning and interzonal airflow on building performance, optimal south-facing glazing area, and thermal comfort. The effect of controlled shades to control unwanted solar gains is also explored. Results show that passive solar buildings, in particular, can benefit from increased air circulation with a forced air system because it allows solar gains to be redistributed and thus reduces direct gain zone overheating and total energy consumption.  相似文献   

2.
This paper investigates the impact of manually operated solar shades on indoor thermal comfort. A developed stochastic model for manual solar shades was modelled in Building Controls Virtual Test Bed, which was coupled with EnergyPlus for co-simulation. Movable solar shades were compared with two unshaded windows (clear double-pane and low-e double-pane). Two objective indices (room base temperature and transmitted solar radiation) and one subjective index (modified predicted mean vote (PMV) index (PMVrad) that considers solar radiation on the human body) were used to evaluate the indoor thermal performance. Results show that external solar shades achieve the best performance in terms of all three indices, especially for PMVrad, hours of comfortable conditions are higher than unshaded windows by 20.6–37.3%. Despite achieving relatively high performance, solar shades are operated infrequently and for about 30% of work time they are not adjusted appropriately, leading to a decrease in indoor thermal comfort.  相似文献   

3.
This study focuses on assessing the effects of the indoor climate in typical multi-storey hostels in Malaysia on student occupants through objective, subjective and evidence based prioritisation measurements. The objective measurements consisted of operative temperature; daylight ratio; luminance and indoor noise level. The subjective measurements were sampled from the student occupants' thermal, visual, acoustics and overall indoor comfort votes. The prioritisation measurement using Multiple Linear Regression and Friedman Tests assessed the relationship between physical indoor thermal, visual and acoustics conditions and students' overall indoor comfort perception vote. Findings suggest that subjective sensor ratings were significantly more reliable than objective measurements at predicting overall indoor comfort. Moreover, students living in hostel rooms with projected balconies voted that they were more satisfied with their indoor condition than the ones living in rooms without projected balconies. The results of this study also provide evidence that student occupants were more concerned with their rooms' thermal condition then followed by acoustics and finally visual conditions.  相似文献   

4.
电荒、节能与热舒适研究   总被引:2,自引:0,他引:2  
电力资源短缺是目前我国面临的重大问题,而空调负荷是造成电网压力大、电力供应严重不足的主要原因之一。人体热舒适研究涉及到空调舒适温度、空调设备运行控制、气流组织优化、节能等方面,其研究成果可直接或间接应用于降低空调能耗。热舒适研究可能成为解决电力紧张的方法之一。  相似文献   

5.
Buildings use approximately 40% of primary energy with most energy expended on the provision of a comfortable indoor climate. An extended range of indoor temperatures can significantly reduce the energy load. However, lower temperature set points for heating can cause thermal discomfort. Giving building occupants the option to warm themselves (e.g. a local source at their desk or workstation) can mitigate this discomfort by the provision of a personalized conditioning system. A model is presented to assess the performance of personalized heating and its impact on the whole building energy load. Researchers, designers and facility managers can use this model to compare performance and analyse energy savings. The total energy use of personalized heating is estimated by scaling its settings to the actual level of discomfort resulting from a lowered heating set point. This model is used to assess seven different personalized heating systems. Assessments reveal that personalized heating brings a remarkable energy-saving potential, while maintaining or even improving individually perceived thermal comfort. Assessments are based on an assumed linear relation between the power and level of increased thermal sensation. Future research in personalized conditioning systems should be directed towards the development of the full characteristics and specific settings.  相似文献   

6.
分析了柜式分体空调的室内热舒适性问题。在室内办公人员密度大、办公工位密集的场所,选用柜式分体空调容易出现气流分布过于集中的情况,从而导致办公室工位热舒适性的差异较大,出现工位弃用的现象,造成办公工位面积的浪费和空调用能浪费。合理的空调方案和室内气流组织不仅能够保证高效的学习和工作,还会降低空调的使用能耗。  相似文献   

7.
目前,既有住宅建筑节能改造主要有围护结构改造和供热计量改造两方面。围护结构节能改造主要包括:外墙节能改造、外窗节能改造、屋面节能改造等技术措施的研究;建筑物围护结构节能改造除了能够降低建筑能耗之外,对建筑物室内热环境也有很大影响。采用ECOTECT能耗模拟软件,对西安市某住宅建筑围护结构不同节能改造方案的热环境进行模拟,深入分析不同节能改造方案的能源消耗、不舒适度、围护结构得热、温度分布和热舒适度情况,以热舒适为前提、节能为目的选择最优的节能改造方案。为既有住宅建筑节能改造方案优选提供依据。  相似文献   

8.
Climate change and the urgency of decarbonizing the built environment are driving technological innovation in the way we deliver thermal comfort to occupants. These changes, in turn, seem to be setting the directions for contemporary thermal comfort research. This article presents a literature review of major changes, developments, and trends in the field of thermal comfort research over the last 20 years. One of the main paradigm shift was the fundamental conceptual reorientation that has taken place in thermal comfort thinking over the last 20 years; a shift away from the physically based determinism of Fanger's comfort model toward the mainstream and acceptance of the adaptive comfort model. Another noticeable shift has been from the undesirable toward the desirable qualities of air movement. Additionally, sophisticated models covering the physics and physiology of the human body were developed, driven by the continuous challenge to model thermal comfort at the same anatomical resolution and to combine these localized signals into a coherent, global thermal perception. Finally, the demand for ever increasing building energy efficiency is pushing technological innovation in the way we deliver comfortable indoor environments. These trends, in turn, continue setting the directions for contemporary thermal comfort research for the next decades.  相似文献   

9.
The energy consumption of a building depends on the thermal demand and on the mean performance of the system. Apart from passive solar indoor climate control techniques, it is also possible to reduce conventional energy consumption of a building, even bringing it close to zero by installing solar heating. Hence, better knowledge of these techniques and of how they can be implemented in a simple but effective way will further progress towards more energy efficient buildings.  相似文献   

10.
人居环境改善涉及重大民生问题,节能减排是国家重大战略。因此,有必要寻求合理的居住建筑设计方法,使设计方案既满足居民的室内热舒适需求又能降低建筑能耗。基于多目标遗传优化算法,建立能够对建筑设计方案进行优化、实现增加室内热舒适时间比例的同时降低建筑全年冷热负荷的居住建筑设计双目标优化模型。最后,以重庆典型户型为实例进行优化,优化后的设计方案建筑全年冷热负荷降低了47.74%,室内热舒适时间比例提高了3.94%,验证了模型的可行性和准确性。  相似文献   

11.
Standards governing thermal comfort evaluation are on a constant cycle of revision and public review. One of the main topics being discussed in the latest round was the introduction of an adaptive thermal comfort model, which now forms an optional part of ASHRAE Standard 55. Also on a national level, adaptive thermal comfort guidelines come into being, such as in the Netherlands. This paper discusses two implementations of the adaptive comfort model in terms of usability and energy use for moderate maritime climate zones by means of literature study, a case study comprising temperature measurements, and building performance simulation. It is concluded that for moderate climate zones the adaptive model is only applicable during summer months, and can reduce energy for naturally conditioned buildings. However, the adaptive thermal comfort model has very limited application potential for such climates. Additionally we suggest a temperature parameter with a gradual course to replace the mean monthly outdoor air temperature to avoid step changes in optimum comfort temperatures.  相似文献   

12.
Occupants’ satisfaction had been researched independently related to thermal and visual stimuli for many decades showing among others the influence of self-perceived control. Few studies revealed interactions between thermal and visual stimuli affecting occupant satisfaction. In addition, studies including interactions between thermal and visual stimuli are lacking different control scenarios. This study focused on the effects of thermal and visual factors, their interaction, seasonal influences, and the degree of self-perceived control on overall, thermal, and visual satisfaction. A repeated-measures laboratory study with 61 participants running over two years and a total of 986 participant sessions was conducted. Mixed model analyses with overall satisfaction as outcome variable revealed that thermal satisfaction and visual satisfaction are the most important predictors for overall satisfaction with the indoor environment. Self-perceived thermal control served as moderator between thermal satisfaction and overall satisfaction. Season had slight influence on overall satisfaction. Random effects explained the highest amount of variance, indicating that intra- and interindividual differences in the ratings of satisfaction are more prevalent than study condition. Future building design and operation plans aiming at a high level of occupant satisfaction should consider personal control opportunities and take into account the moderating effect of control opportunities in multimodal interactions.  相似文献   

13.
A two-storey rammed earth building was built on the Thurgoona Campus of Charles Sturt University in Albury-Wodonga, Australia, in 1999. The building is novel both in the use of materials and equipment for heating and cooling. The climate at Wodonga can be characterised as hot and dry, so the challenge of providing comfortable working conditions with minimal energy consumption is considerable. This paper describes an evaluation of the building in terms of measured thermal comfort and energy use. Measurements, confirmed by a staff questionnaire, found the building was too hot in summer and too cold in winter. Comparison with another office building in the same location found that the rammed earth building used more energy for heating. The thermal performance of three offices in the rammed earth building was investigated further using simulation to predict office temperatures. Comparisons were made with measurements made over typical weeks in summer and winter. The validated model has been used to investigate key building parameters and strategies to improve the thermal comfort and reduce energy consumption in the building. Simulations showed that improvements could be made by design and control strategy changes.  相似文献   

14.
随着住宅节能技术的广泛推行,对窗户的气密性要求越来越高,冬季冷风渗透远远不能满足室内人员对新风的最低需求。为了寻找节能、舒适的通风方式,本研究利用FLUENT对工程中较为常见的通风方式:自然通风方式、自然进机械排通风方式、带热交换的墙式通风器方式、带热交换的通风换气机组方式在气流组织、舒适性能、能耗特性及初投资方面进行了应用效果评价。最终得出:对于层高和装修标准较高的高级住宅中使用带热交换的通风换气机组,可以使通风系统在满足热舒适性和空气品质的基础上,更加节能,而对于一般住宅建筑,自然进机械排通风方式是相对最优选择。  相似文献   

15.
主动式立面经常在建筑中应用以促进建筑通风,为了保证这个过程的有效性,主动式立面必须朝南,然而这样,太阳辐射就会穿过玻璃直射室内,夏热季节则需要借助遮阳设施来遮挡,这可能会导致室内采光达不到标准。另一方面,采用主动式立面的建筑倾向于提高蓄热性能来强化夜间蓄冷效果,结果可能导致声回响时间延长,干扰人的工作。本文对采用主动式立面的办公建筑室内光、声和热环境性能进行测试评价,初步分析结果表明,主动式立面的优点是能够通过被动方式利用太阳能,提供高质量的工作环境,而如何确保空气流动路径通畅,以及如何采取相应措施减少声回响时间值得关注。  相似文献   

16.
介绍了应用于建筑节能领域的相变蓄能材料,探讨了相变蓄能材料在建筑围护结构、相变蓄热供暖系统与相变蓄冷空调系统中的应用。研究表明,相变蓄能材料在建筑领域的应用可以有效地利用太阳能等清洁型能源,缓解建筑物热量供需双方不平衡矛盾,提高室内舒适度,减小建筑能源消耗。总结并展望了未来相变蓄能材料在节能建筑领域应用的研究方向和发展前景。  相似文献   

17.
An open-air scale model is used to quantify pedestrian radiative and convective energy exchanges in street canyons of varying geometry, as well as surface-atmosphere energy exchanges above the urban canopy. A semi-empirical model based on measured data in summer is developed to link between the two levels, for the prediction of pedestrian energy exchange within a given street canyon based on climatic conditions above the street array. The relationships identified in the semi-empirical model are then tested with an independent data set from the winter season, demonstrating that the semi-empirical model may be used to predict the effect of street geometry on pedestrian comfort under varying seasonal conditions. Finally, the estimation of pedestrian energy exchange by street geometry is refined to include the effects of humidity and evaporative heat loss along with radiation and convection, and results are used to correlate between physiological energy exchange and thermal sensation, which is a more direct measure of human thermal comfort. The results reinforce previous findings, which indicate that in a hot-arid climate, compact street canyons can substantially reduce overall pedestrian thermal discomfort if their axis orientation is approximately north–south, while in east–west oriented canyons the effect of street proportions is much less pronounced.  相似文献   

18.
In the automation of interior window shading devices, a control system that relies on a prediction of environmental conditions and a building's thermal response can provide savings to space-conditioning loads beyond what can be achieved using a reactive approach. The development of these control strategies can be difficult because of the uniqueness of each building. A simplified model-based predictive control (MPC) method for window shades is proposed. To this end, a control-oriented model representing the heat transfer problem in a perimeter office space was developed. The parameters of the model were estimated using the ensemble Kalman filter (EnKF). The energy-savings potential of the EnKF-based MPC approach for window shades was investigated using EnergyPlus simulations. This was accomplished by implementing the control-oriented model into the energy management system application of EnergyPlus. Simulations were conducted to assess the energy saving potential of using the EnKF-based MPC for roller blinds in a south-facing perimeter office space in Ottawa, Canada. The simulation-based results indicate the potential for about 35% reduction in electricity usage for space conditioning over manually operated interior roller blinds.  相似文献   

19.
In addition to ensuring the thermal comfort of occupants, monitoring and controlling indoor thermal environments can reduce the energy consumed by air conditioning systems. This study develops an additive model for predicting thermal comfort with rapid and simple arithmetic calculations. The advantage of the additive model is its comprehensibility to administrators of air conditioning systems, who are unfamiliar with the PMV–PPD model but want to adjust an indoor environment to save energy without generating complaints of discomfort from occupants. In order to generate the additive model, a laboratory chamber experiment based on matrix experiment using orthogonal array, was performed. By applying the analysis of variance on observed thermal sensation votes and percentage of dissatisfaction, the factor effects of environmental variables that account for the additive model were determined. Additionally, the applicability of the PMV–PPD model in hot and humid climates is discussed in this study, based on experimental results.  相似文献   

20.
龚明启  冀兆良 《山西建筑》2005,31(5):110-111
介绍了空调房间室内温度控制的途径和方法,分析了空调房间内空气计算参数温度对热舒适性和建筑能耗的影响,指出在一定温度和湿度的范围内,通过提高室内温度的途径来减少空调系统能耗的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号