首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimating thermal performance of cool colored paints   总被引:2,自引:0,他引:2  
The purpose of this study is to investigate the thermal performance of cool colored acrylic paints containing infrared reflective pigments in comparison to conventional colored acrylic paints of similar colors (white, brown and yellow) applied on sheets of corrugated fiber cement roofing. Evaluated properties are: color according to ASTM D 2244-89, the UV/VIS/NIR reflectance according to ASTM E 903-96, and thermal performance by exposure to infrared radiation emitted from a lamp with the measurement of surface temperatures of the specimens with thermocouples connected to a data logging system.Results demonstrated that the cool colored paint formulations produced significantly higher NIR reflectance than conventional paints of similar colors, and that the surface temperatures were more than 10 °C lower than those of conventional paints when exposed to infrared radiation. The study shows that cool paints enhance thermal comfort inside buildings, which can reduce air conditioning costs.  相似文献   

2.
This article presents an experimental analysis of cooling buildings using nighttime cold accumulation in a phase change material (PCM), otherwise known as the “free-cooling principle”. Studies of the ceiling and floor free-cooling principle, as well as passive cooling, are presented. The free-cooling principle is explained and some of the types of PCMs suitable for summer cooling are listed. An experiment was conducted using paraffin with a melting point of 22 °C as the PCM to store cold during the nighttime and to cool hot air during the daytime in summer. Air temperatures and heat fluxes as a function of time are presented for different air velocities and inlet temperatures.  相似文献   

3.
Urban Heat Island refers to the temperature increase in urban areas compared to rural settings, exacerbating the energy consumption of buildings for cooling. The use of highly reflective materials in buildings and urban structures reduces the absorbed solar radiation and contributes to mitigate heat island. This paper presents the results of a study aiming to measure and analyze the solar spectral properties and the thermal performance of 5 color thin layer asphalt samples in comparison to a sample of conventional black asphalt. Computational fluid dynamics (CFD) simulation is used for evaluating the thermal and energy impact of applying the samples in outdoor spaces (roads). The spectrophotometric measurements showed that the colored thin layer asphalt samples are characterized by higher values of solar reflectance compared to the conventional asphalt, which is mainly due to their high near infrared solar reflectance. From the statistical analysis of the surface temperatures it was found that all the colored thin layer asphalt samples demonstrate lower surface temperatures compared to conventional asphalt. The maximum temperature difference recorded was for the off-white sample and was equal to 12 °C. The CFD simulation results show that surface and air temperatures are decreased when applying the color thin layer sample.  相似文献   

4.
An experimental and numerical simulation study of the application of phase change materials (PCMs) in building components is presented for thermal management of a passive solar test-room. The experimental study was conducted in an outdoor test cell constituted of two small rooms separated with a wall containing PCM. A specific wall made of hollow glass bricks filled with PCM was studied. Three PCMs were tested: fatty acid, paraffin, and salt hydrate whose melting temperatures are 21 °C, 25 °C and 27.5 °C respectively.Indoor and outdoor temperatures were measured with thermocouples. Ten fluxmeters located at the centre of each wall allowed us to measure the heat fluxes across the walls. Tests were carried out in real climatic conditions.A one-dimensional numerical model has been developed to simulate the transient heat transfer process in the walls. Reasonable agreement between the simulation and the experimental results was observed.  相似文献   

5.
利用液体石蜡-46#石蜡、液体石蜡—月桂酸和癸酸—肉豆蔻酸3种相变材料混合物分别与高密度聚乙烯混合制备定形相变材料.通过直接混合法把定形相变材料加入水泥砂浆制备定形相变墙体.实验研究了相变墙体和普通墙体的传热性能和力学性能.实验结果显示:定形相变墙体表面温度和热流均低于普通墙体;热物性不同的相变材料随着墙体中含量的增加...  相似文献   

6.
针对夏季北京地区建筑屋面涂覆太阳热反射涂料后的隔热节能效果进行理论分析和实证研究,结果表明:冷屋面温度及得热量明显降低,可减少夏季建筑空调负荷,具有明显的节能效果。  相似文献   

7.
This paper is aimed at analyzing the thermal characteristics of packed bed containing spherical capsules, used in a latent heat thermal storage system with a solar heating collector. Myristic acid is selected as phase change material (PCM), and water is used as heat transfer fluid (HTF). The mathematical model based on the energy balance of HTF and PCM is developed to calculate the temperatures of PCM and HTF, solid fraction and heat release rate during the solidifying process. The latent efficiency, which is defined as the ratio between the instantaneous released latent heat and the maximum released heat, is introduced to indicate the thermal performances of the system. The inlet temperature of HTF (50 °C), flow rate of HTF (10 kg/min) and initial temperature of HTF (66 °C) were chosen for studying thermal performances in solar heat storage system. The influences of inlet temperature of HTF, flow rate of HTF and initial temperatures of HTF and PCM on the latent efficiency and heat release rate are also analyzed and discussed.  相似文献   

8.
使用EnergyPlus能耗模拟软件对相变材料作为外墙表面隔热材料的应用效果进行模拟,在小空间和小型办公室的模型上,改变相变材料的相变温度、材料结构和用量等使用条件,并进一步考虑室内热源和不同气候区的影响,对比分析在空调季节里空间内部温度的变化情况和空调节能效果。模拟结果表明:相变温度稍高的相变材料更有利于夜间散热蓄冷,同时,结合双层复合结构可获得更好的温度抑制和节能效果;内热源的存在会提高房间空调能耗的基数,从而使相变材料空调节能率计算值降低,并且在一定程度上掩盖了相变材料对室内平均温度的抑制作用,尽管如此,相变材料在有内热源环境下使用时空调节能量仍与无内热源时相当。  相似文献   

9.
An interior sun protection system consisting of vertical slats filled with phase change material (PCM) was monitored from winter 2008 until summer 2010. While conventional interior sun protection systems often heat up to temperatures of 40 °C or more, the monitoring results show that the surface temperature on the interior side of the PCM-filled slats hardly ever exceeded the PCM melting temperature of 28 °C even in case of long-term intense solar radiation. As long as the PCM is not fully melted, the latent heat storage effect reduces the solar heat gain coefficient (g-value) of the sun protection system to 0.25 for a totally closed blind, and 0.30 for slats set at 45° (the g-values of the same system without PCM are 0.35 and 0.41, respectively). This reduced the maximum air temperature in the offices by up to 2 K in contrast to a reference room with a comparable conventional blind. The sun protection system with PCM therefore considerably improves thermal comfort. In order to discharge the PCM, the stored heat must be dissipated during the night. In climates with sufficiently low outside air temperatures, this is best achieved using a ventilation system in combination with tilted windows.  相似文献   

10.
This paper presents an experimental study on the impact of reflective coatings on indoor environment and building energy consumption. Three types of coatings were applied on identical buildings and their performance was compared with three sets of experiments in both summer and winter. The first experiment considers the impact of coatings on exterior and interior surface temperatures, indoor air temperatures, globe temperature, thermal stratification and mean radiant temperatures for non-conditioned buildings (free-floating case); the second one focused on the impact of coatings on reduction of electricity consumption in conditioned spaces; in the third experiment, the impact of different envelope material properties equipped with different coatings was investigated. The results showed that, depending on location, season and orientation, exterior and interior surface temperatures can be reduced by up to 20 °C and 4.7 °C respectively using different coatings. The maximum reduction in globe temperature and mean radiant temperature was 2.3 °C and 3.7 °C in that order. For the conditioned case, the annual reduction in electricity consumption for electricity reached 116 kWh. Nevertheless, the penalty in increased heating demand can result in a negative all-year effect in Shanghai, which is characterized by hot summers and cold winters.  相似文献   

11.
《Energy and Buildings》2005,37(3):235-242
The time variations of the water temperatures at the midpoint of the heat storage tank and at the outlet of the collector in a conventional open-loop passive solar water-heating system combined with sodium thiosulfate pentahydrate-phase change material (PCM) were experimentally investigated during November and then enhancement of solar thermal energy storage performance of the system by comparing with those of conventional system including no PCM was observed. It was observed that the water temperature at the midpoint of the storage tank decreased regularly by day until the phase-change temperature of PCM after the intensity of solar radiation decreased and then it was a constant value of 45 °C in a time period of approximately 10 h during the night until the sun shines because no hot water is used. Heat storage performances of the same solar water-heating system combined with the other salt hydrates-PCMs such as zinc nitrate hexahydrate, disodium hydrogen phosphate dodecahydrate, calcium chloride hexahydrate and sodium sulfate decahydrate (Glauber's salt) were examined theoretically by using meteorological data and thermophysical properties of PCMs with some assumptions. It was obtained that the storage time of hot water, the produced hot water mass and total heat accumulated in the solar water-heating system having the heat storage tank combined with PCM were approximately 2.59–3.45 times of that in the conventional solar water-heating system. It was also found that the hydrated salts of the highest solar thermal energy storage performance in PCMs used in theoretical investigation were disodium hydrogen phosphate dodecahydrate and sodium sulfate decahydrate.  相似文献   

12.
根据相变材料蓄冷堆积床的传热特性,提出了一种堆积床的优化设计方法。以一种新型相变材料为蓄冷媒介,以堆积床的总费用为优化目标,以蓄冷量、蓄冷时间及载冷流体温度作为约束条件建立优化模型,得出了给定蓄冷量条件下系统初投资和年运行费用总和最低时的蓄冷单元数量、定性尺寸和换热流体温差等优化参数。定量分析了谷峰电价比对系统运行电费的影响。  相似文献   

13.
《Energy and Buildings》2006,38(6):673-681
Light envelopes are more and more frequently used in modern buildings but they do not present sufficient thermal inertia. A solution to increase this inertia is to incorporate a phase change material (PCM) in this envelope. This paper presents the performance of a test-cell with a new structure of light wallboards containing PCMs submitted to climatic variation and a comparison is made with a test-cell without PCMs. To improve the wallboard efficiency a vacuum insulation panel (VIP) was associated to the PCM panel. This new structure allows the apparent heat capacity of the building to be increased, the solar energy transmitted by windows to be stored without raising the indoor cell temperature, and the thickness of the wallboard to be decreased compared with that of traditional wallboards. An experimental study was carried out by measuring temperature and heat fluxes on and through the wallboards. The indoor temperature, which has a special importance for occupants, was also measured.A numerical simulation with the TRNSYS software was carried out in adding a new module representing the new wallboard. It showed a good agreement with experimental results. This new tool will allow users to simulate the thermal behaviour of buildings having walls with PCMs.  相似文献   

14.
In this study, fatty acid ester/building material composites as novel form-stable phase change materials (PCMs) were prepared by absorbing liquid fatty acid esters into porous network of conventional building materials. In the composite erythritol tetrapalmitate (ETP) and erythritol tetrastearate (ETS) esters were used as PCM for thermal energy storage, and cement and gypsum used as supporting material. The composite PCMs were characterized using scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis technique. The SEM results showed that the esters were confined in the porous network of the cement and gypsum. Thermal properties and thermal stabilities of the composite PCMs were determined by using differential scanning calorimetry (DSC) and thermal gravimetric (TG) analysis techniques. DSC results showed that the melting temperatures and the latent heats of the prepared composite PCMs were in range of 21.6-32.3 °C and 35.9-43.3 J/g, respectively. TG analysis indicated that the composite PCMs had good thermal stability. The thermal cycling test including 1000 heating and cooling process was conducted to determine the thermal reliability of the composite PCMs and the test results revealed that the composite PCMs have good thermal reliability and chemical stability.  相似文献   

15.
《Energy and Buildings》2006,38(10):1262-1269
Shape-stabilized phase change material (PCM) is a kind of novel PCM. It has the following salient features: large apparent specific heat for phase change temperature region, suitable thermal conductivity, keeping shape stabilized in the phase change process and no need for containers. The preparation for such kind material was investigated and its thermophysical properties were measured. Some applications of such material in energy efficient buildings (e.g., in electric under floor space heating system, in wallboard or floor to absorb solar energy to narrow the temperature swing of a day in winter) were studied. Some models of analyzing the thermal performance of the systems were developed, which were validated with the experiments. The following conclusions are obtained: (1) the applications of the novel PCM we put forward are of promising perspectives in some climate regions; (2) by using different paraffin, the melting temperature of shape-stabilized PCM can be adjusted; (3) the heat of fusion of it is in the range of 62–138 kJ kg−1; (4) for PCM floor or wallboard to absorb solar energy to narrow the temperature swing in a day in winter, the suitable melting temperature of PCM should be a little higher than average indoor air temperature of the room without PCM for the period of sunshine; (5) for the electric under-floor space heating system, the optimal melting temperature can be determined by simulation; (6) PCM layer used in the aforementioned application should not be thicker than 2 cm; (7) the models developed by us are helpful for applications of shape-stabilized PCM in buildings.  相似文献   

16.
This paper studies a new innovative concrete with phase change materials (PCM) on thermal aspects. The final objective is to develop a product which would achieve important energy savings in buildings. The work here presented is the construction and experimental installation of two real size concrete cubicles to study the effect of the inclusion of a PCM with a melting point of 26 °C. The cubicles were constructed in the locality of Puigverd of Lleida (Spain). The results of this study show the energy storage in the walls by encapsulating PCMs and the comparison with conventional concrete without PCMs leading to an improved thermal inertia as well as lower inner temperatures.  相似文献   

17.
The incorporation of Phase Change Materials (PCMs) into the opaque envelope of lightweight buildings is a good solution to compensate for the small thermal inertia, which usually entails pronounced overheating and high space cooling load in summer. However, the position and the thickness of the PCMs, as well as their thermal properties, must be attentively selected in order to ensure their effective operation. This paper shows a comprehensive investigation about the effectiveness of a commercial PCM, available in the form of mats, when installed within drywall partition systems in air-conditioned lightweight office buildings. The study is based on dynamic simulations carried out with EnergyPlus on a typical office building, with the aim to calculate the indoor operative temperature and the cooling load under thermostatic control. The performance for the base case (without PCM) is then compared with the case where PCM mats with various thickness and melting temperature are applied. The analysis is repeated in three different locations, ranging from Southern Europe (Rome, Italy), Continental Europe (Wien, Austria) and Northern Europe (London, UK). The results of the simulations highlight that in lightweight air-conditioned office buildings PCMs contribute to attenuate the inside surface temperature peak by around 0.5 °C, while also reducing the peak cooling load by 10% or even 15%, depending on the PCM thickness and on the outdoor climate. The conclusions may help designers to make the correct choices in terms of thickness of the PCMs, scheduled rate of nighttime ventilation and value of the peak melting temperature.  相似文献   

18.
The incorporation of phase change materials (PCMs) in building materials for use as latent heat storage and for potential reduction of energy requirements is an on-going field of study. In this paper, the development and testing of PCM-enhanced cellulose insulation for use in frame walls is presented. Two types of PCMs, paraffin-based and hydrated salt-based, were mixed into loose-fill cellulose insulation at concentrations of 10% and 20% (by the weight of the wallboard) in a 1.22 m × 1.22 m (48 in. × 48 in.) frame wall cavity. The thermally-enhanced frame walls were heated and allowed to cool down in a dynamic wall simulator that replicated the sun's exposure in a wall of a building on a typical summer day. Peak heat fluxes, total “daily” heat flows, and surface and air temperatures were measured and recorded. Results show that the paraffin-based PCM-enhanced insulation reduced the average peak heat flux by up to 9.2% and reduced the average total “daily” heat flow up to 1.2%. Because of the hydroscopic behavior of un-encapsulated hydrated salt, the hydrated salt-based PCM-enhanced insulation did not provide any thermal storage benefit.  相似文献   

19.
Experimental study on cool release process of gas-hydrate with additives   总被引:1,自引:0,他引:1  
Cool release process of phase change material (PCM) includes the dissolution process of the PCM. Experimental research on the cool release process in a new gas-hydrate cool storage system is performed in this paper. In the system, the inner-heat exchange/outer-crystallization technology and the integrated condenser/evaporator structure design were adopted. The influences of different proportions of calcium hypochlorite or benzenesulfonic acid sodium salt on the dissolution process are studied. The results show that the instantaneous dissolution rate is close to twice as the corresponding instantaneous formation rate of gas-hydrate, and the cold energy release rate, i.e. energy release per unit time, is obviously higher than the corresponding cold energy storage rate at different conditions, which is mainly due to the heat transfer temperature difference of the discharging (release) and charging (store) processes. Both the charging and the discharging processes are simultaneously dominated by the heat transfer and the mass transfer processes. However, as to the dissolution (discharging) process of the gas-hydrate by heating, the effect of the heat transfer process is the main influence factor. The temperature difference between the heating medium and the gas-hydrate in the discharging process, which is larger than that between the cooling medium and the gas-hydrate in the charging process, makes a higher cold energy release rate compared with the cold energy storage rate. The results also indicate that the dissolution rate of gas-hydrate is accelerated, and the cold energy release rate of the cool storage system is increased by adding reasonable proportions of the additives.  相似文献   

20.
The impact from using cool roof coatings on the cooling and heating loads and the indoor thermal comfort conditions of residential buildings for various climatic conditions is estimated. The energy cooling loads and peak cooling demands are estimated for different values of roof solar reflectance and roof U-value. The results show that increasing the roof solar reflectance reduces cooling loads by 18–93% and peak cooling demand in air-conditioned buildings by 11–27%. The indoor thermal comfort conditions were improved by decreasing the hours of discomfort by 9–100% and the maximum temperatures in non air-conditioned residential buildings by 1.2–3.3 °C. These reductions were found to be more important for poorly or non-insulated buildings. For the locations studied, the heating penalty (0.2–17 kWh/m2 year) was less important than the cooling load reduction (9–48 kWh/m2 year). The application of cool roof coatings is an effective, minimal cost and easy to use technique that contributes to the energy efficiency and the thermal comfort of buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号