首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stratum ventilation has been proposed to cope for elevated indoor temperatures. Air speed, temperature and CO2 concentration of a stratum ventilated office are investigated experimentally. The data obtained under well defined conditions and therefore can be used for validating numerical models. Thermal comfort conditions and ventilation efficiency are studied based on the experimental results of four experimental cases. Thermal comfort indices, i.e. PMV, PPD and PD are calculated from measured data. The values of these indices are found to satisfy the requirements of ISO 7730, CR 1752-1998 and ASHRAE 55-2010. In terms of thermal comfort, the two cases with supply air temperature of 21 °C are found to perform better compared with the two cases with supply air temperature of 19 °C. For all the cases, the ventilation effectiveness is close to 1.5. This ventilation method could therefore be expected to provide indoor air quality in an efficient way.  相似文献   

2.
The effect of vertical air temperature gradient on overall and local thermal comfort at different overall thermal sensations and room air temperatures (at 0.6 m height) was investigated in a room served by displacement ventilation system. Sixty tropically acclimatized subjects performed sedentary office work for a period of 3 h during each session of the experiment. Nominal vertical air temperature gradients between 0.1 and 1.1 m heights were 1, 3 and 5 K/m while nominal room air temperatures at 0.6 m height were 20, 23 and 26 °C. Air velocity in the space near the subjects was kept at below 0.2 m/s. Relative humidity at 0.6 m height was maintained at 50%. It was found that temperature gradient had different influences on thermal comfort at different overall thermal sensations. At overall thermal sensation close to neutral, only when room air temperature was substantially low, such as 20 °C, percentage dissatisfied of overall body increased with the increase of temperature gradient. At overall cold and slightly warm sensations, percentage dissatisfied of overall body was non-significantly affected by temperature gradient. Overall thermal sensation had significant impact on overall thermal comfort. Local thermal comfort of body segment was affected by both overall and local thermal sensations.  相似文献   

3.
A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In this method three indexes, including reliability, sensitivity and number of measurement sites, were proposed. Under air temperatures of 21 °C, 24 °C, 26 °C, and 29 °C, 22 subjects’ local skin temperatures (21 sites) and electrocardiograms were measured, and their thermal sensation and thermal comfort were inquired. Human heart rate variability indicated the physiological relation between mean skin temperature and ambient temperature for the sensitivity evaluation. Adopting the evaluation method, 26 types of mean skin temperature calculation methods were evaluated based on the experimental data. The results indicate that a calculation method of mean skin temperature with 10 sites is the most appropriate one, due to its high reliability, excellent sensitivity and fewer measuring sites. When it was applied to reflect thermal comfort, the performance was good.  相似文献   

4.
Human response to air movement supplied locally towards the face was studied in a room with an air temperature of 20 °C and a relative humidity of 30%. Thirty-two human subjects were exposed to three conditions: calm environment and facially supplied airflow at 21 °C and at 26 °C. The air was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 °C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend the applicability of personalized ventilation aiming to supply clean air for breathing at the lower end of the temperature range recommended in the standards. Providing individual control is essential in order to avoid discomfort for the most sensitive occupants.  相似文献   

5.
Three human test series were conducted to evaluate the uniformity of the thermal environments in a stratum‐ventilated chamber with dimensions of 8.8 m (L) × 5.1 m (W) × 2.4 m (H). In all, nineteen conditions were generated by adjusting the room temperature, supply airflow rate, and supply terminal type. An air diffuser performance index (ADPI) of at least 80% was achieved for most cases. This result shows that the air velocity and temperature in the occupied zone are reasonably uniform. Subjective assessments using the ASHRAE 7‐point scale indicate that the thermal sensations of the subjects in stratum ventilation are also uniform. This study examines the applicability of the predicted mean vote (PMV) model for evaluating stratum ventilation. When compared to the actual mean thermal sensation votes (ATS), the PMV values are acceptable. The PMV results at a height of 1.1 m above the floor show better agreement with the ATS than at a height of 0.1 m.  相似文献   

6.
Y. Cheng  Z. Lin 《Indoor air》2015,25(6):662-671
The motivation of this study is stimulated by a lack of knowledge about the difference of airflow characteristics between a novel air distribution method [i.e., stratum ventilation (SV)] and conventional air distribution methods [i.e., mixing ventilation (MV) and displacement ventilation (DV)]. Detailed air velocity and temperature measurements were conducted in the occupied zone of a classroom with dimensions of 8.8 m (L) × 6.1 m (W) × 2.4 m (H). Turbulence intensity and power spectrum of velocity fluctuation were calculated using the measured data. Thermal comfort and cooling efficiency were also compared. The results show that in the occupied zone, the airflow characteristics among MV, DV, and SV are different. The turbulent airflow fluctuation is enhanced in this classroom with multiple thermal manikins due to thermal buoyancy and airflow mixing effect. Thermal comfort evaluations indicate that in comparison with MV and DV, a higher supply air temperature should be adopted for SV to achieve general thermal comfort with low draft risk. Comparison of the mean air temperatures in the occupied zone reveals that SV is of highest cooling efficiency, followed by DV and then MV.  相似文献   

7.
This paper aims at studying the energy impact of a chilled ceiling displacement ventilation CC/DV system aided with a personalized evaporative cooler (PEC) directed towards the occupant trunk and face. A simulation model is developed for integrating the personalized cooler with the ascending thermal plume. The thermal model of the conditioned room air around the person is integrated with a segmental bioheat and thermal comfort model to predict the human thermal comfort.The model is validated with experimental data on the vertical temperature distribution in the room, and the recorded overall comfort perceived by surveyed subjects. Experimental results agreed well with predicted values of temperature and comfort level. When using personalized cooling, the DV supply air temperature can be as high as 24 °C while the PEC at flow rates of 3–10 l/s achieved similar comfort with a DV system at supply temperature of 21 °C. At equal thermal comfort level, the integrated CC/DV system, PEC model resulted in up to 17.5% energy savings compared to the CC/DV system without a PEC. When mixed air is used in the CC/DV system additional 25% savings in energy is realized when compared with energy used for the 100% fresh air without the PEC.  相似文献   

8.
Draft is unwanted local convective cooling. The draft risk model of Fanger et al. (Energy and Buildings 12 , 21‐39, 1988) estimates the percentage of people dissatisfied with air movement due to overcooling at the neck. There is no model for predicting draft at ankles, which is more relevant to stratified air distribution systems such as underfloor air distribution (UFAD) and displacement ventilation (DV). We developed a model for predicted percentage dissatisfied with ankle draft (PPDAD) based on laboratory experiments with 110 college students. We assessed the effect on ankle draft of various combinations of air speed (nominal range: 0.1‐0.6 m/s), temperature (nominal range: 16.5‐22.5°C), turbulence intensity (at ankles), sex, and clothing insulation (<0.7 clo; lower legs uncovered and covered). The results show that whole‐body thermal sensation and air speed at ankles are the dominant parameters affecting draft. The seated subjects accepted a vertical temperature difference of up to 8°C between ankles (0.1 m) and head (1.1 m) at neutral whole‐body thermal sensation, 5°C more than the maximum difference recommended in existing standards. The developed ankle draft model can be implemented in thermal comfort and air diffuser testing standards.  相似文献   

9.
Performance of heat emitters in a room is affected by their interaction with the ventilation system. A radiator gives more heat output with increased air flow along its heat transferring surface, and with increased thermal difference to surrounding air. Radiator heat output and comfort temperatures in a small one-person office were studied using different positions for the ventilation air inlet. In two of the four test cases the air inlet was placed between radiator panels to form ventilation-radiator systems. Investigations were made by CFD (Computational Fluid Dynamics) simulations, and included visualisation of thermal comfort conditions, as well as radiator heat output comparisons. The room model was exhaust-ventilated, with an air exchange rate equal to what is recommended for Swedish offices (7 l s−1 per person) and cold infiltration air (−5 °C) typical of a winter day in Stockholm.Results showed that under these conditions ventilation-radiators were able to create a more stable thermal climate than the traditional radiator ventilation arrangements. In addition, when using ventilation-radiators the desired thermal climate could be achieved with a radiator surface temperature as much as 7.8 °C lower. It was concluded that in exhaust-ventilated office rooms, ventilation-radiators can provide energy and environmental savings.  相似文献   

10.
In this work the comfort and airflow were evaluated for spaces equipped with mixing ventilation and cold radiant floor. In this study the coupling of an integral multi-nodal human thermal comfort model with a computational fluid dynamics model is developed. The coupling incorporates the predicted mean vote (PMV) index, for the heat exchange between the body and the environment, with the ventilation effectiveness to obtain the air distribution index (ADI) for the occupied spaces with non-uniform environments. The integral multi-nodal human thermal comfort model predicts the external skin and clothing surfaces temperatures and the thermal comfort level, while the computational fluid dynamics model evaluates the airflow around the occupants. The air distribution index, that was developed in the last years for uniform environments, has been extended and implemented for non-uniform thermal environments. The airflow inside a virtual chamber equipped with two occupants seated in a classroom desk, is promoted by a mixing ventilation system with supply air of 28 °C and by a cold radiant floor with a surface temperature of 19 °C. The mechanical mixing ventilation system uses a supply and an exhaust diffusers located above the head level on adjacent walls.  相似文献   

11.
Guohui Gan 《Indoor air》1994,4(3):154-168
Heat, mass and momentum transfer takes place simultaneously in ventilated rooms. For accurate predictions of the indoor environment, all the environmental parameters that influence these transport phenomena should be taken into consideration. This paper introduces a method for a full assessment of indoor thermal comfort using computational fluid dynamics in conjunction with comfort models. A computer program has been developed which can be used for predicting thermal comfort indices such as thermal sensation and draught risk. The sensitivity of predicted comfort indices to environmental parameters is analysed for a mechanically ventilated office. It was found that when the mean radiant temperature was considered uniform in the office, the error in the predicted percentage of dissatisfied (PPD) could be as high as 7.5%. The prediction became worse when the mean radiant temperature was taken to be the same as air temperature point by point in the space. Moreover, disregarding the variation of vapour pressure in the space resulted in an error in PPD of abour 4% near the source of moisture generation. The importance of evaluating both thermal sensation and draught risk is also examined. It is concluded that in spaces with little air movement only the thermal sensation is needed for evaluation of indoor thermal comfort whereas in spaces with air movement induced by mechanical vantilation or air-conditioning systems both thermal sensation and draught risk should be evaluated.  相似文献   

12.
The use of displacement ventilation for cooling environments is limited by the vertical temperature gradient. Current standards recommend a temperature difference of up to 3 K/m between the head and the feet. This paper reviews the scientific literature on the effect of vertical temperature gradients on thermal comfort and compares this to the results of our own experiments. Early experiments have demonstrated a high sensitivity of dissatisfied test subjects to changes in the temperature gradient between head and foot level. Recent studies have indicated that temperature gradients of 4‐5 K/m are likely to be acceptable, and the mean room temperature may have a greater sensitivity on the percentage of dissatisfied (PD). In new experiments, test subjects have evaluated the thermal comfort of different vertical air temperature gradients in a modular test chamber, the Aachen comfort cube (ACCu), where they have assessed vertical temperature gradients of ΔTy = 1, 4.5, 6, 8, and 12 K/m at a constant mean room temperature of 23°C. The results of the different temperature gradients are in contrast to ANSI/ASHRAE Standard 55 (Thermal Environmental Conditions for Human Occupancy, Atlanta GA, American Society of Heating, Refrigerating and Air Conditioning Engineers, 2013) as the PD increases almost constantly with higher vertical air temperature gradients. The PD for the overall sensation increases by approximately 7% between gradients of 1 and 8 K/m. The evaluation of our own tests has revealed that vertical temperature gradients of up to 8 K/m or higher are likely to be acceptable for test subjects.  相似文献   

13.
Solar air-conditioning can have higher application potential for buildings through the strategy of high temperature cooling. In recent years, displacement ventilation (DV), which makes use of the indoor rising plumes from the internal heat gains, provides a more effective supply air option than the traditional mixing ventilation (MV) in terms of both thermal comfort and indoor air quality. As it is possible to raise the supply air temperature to 19 °C for DV, it would enhance the competitive edge of the solar air-conditioning against the conventional vapour compression refrigeration. Through dynamic simulation, a solar-desiccant-cooling displacement ventilation system (SDC_DV) was developed for full-fresh-air provision, while a solar-hybrid-desiccant-cooling displacement ventilation system (SHDC_DV) for return air arrangement. The latter was further hybridized with absorption chiller (AB) to become SHDCAB_DV, or adsorption chiller (AD) to be SHDCAD_DV, in order to be wholly energized by the solar thermal gain. Benchmarked with the conventional system using MV, the SDC_DV had 43.3% saving in year-round primary energy consumption for a typical office in the subtropical climate; the SHDCAB_DV had 49.5% saving, and the SHDCAD_DV had 18.3% saving. Compared with their MV counterparts, the SDC_DV, the SHDCAB_DV and the SHDCAD_DV could have 42.4%, 21.9% and 30.3% saving respectively.  相似文献   

14.
The objective of this study was to assess the effect of air humidification and temperature on thermal comfort in sedentary office work. A blinded twelve-period cross-over trial was carried out in two similar wings of an office building, contrasting 28–39% steam humidification with no humidification, corresponding to 12–28% relative humidity. The length of each period was one working week. The study population was 169 workers who judged their thermal sensations in a weekly questionnaire. The percentage of dissatisfied was lowest when the air temperature was 22 °C. At 22 °C an increase in relative humidity raised the mean thermal sensation only slightly. At 20 °C when the air was humidified there were fewer workers who judged their air temperature as being too low. On the other hand, at 24 °C humidification increased the percentage of workers who judged their air temperature to be too high. The percentage of dissatisfied increased rapidly when the air temperature was outside of its optimum value, 22 °C. The percentage of workers complaining about draft increased when the air temperature was lower than 22 °C. Thus we consider that the temperature range from 20 to 24 °C during wintertime may be too wide without individual temperature control from the point vzew of thermal comfort. We recommend that the air temperature should be kept between 21 and 23 °C if no individual control is available. The best solution would be individual temperature control permitting adjustment of the temperature at 22 ± 2 °C.  相似文献   

15.
The importance of the intake positioning height above the floor level on the performance of “ductless” personalized ventilation (“ductless” PV) in conjunction with displacement ventilation (DV) was examined with regard to the quality of inhaled air and of the thermal comfort provided. A typical office room with two workstations positioned one behind the other was arranged in a full-scale room. Each workstation consisted of a table with an installed “ductless” PV system, PC, desk lamp and seated breathing thermal manikin. The “ductless” PV system sucked the clean and cool displacement air supplied over the floor at four different heights, i.e. 2, 5, 10 and 20 cm and transported it direct to the breathing level. Moreover, two displacement airflow rates were used with a supply temperature adjusted in order to maintain an exhaust air temperature of 26 °C. Two pollution sources, namely air exhaled by one of the manikins and passive pollution on the table in front of the same manikin were simulated by constant dosing of tracer gases. The results show that the positioning of a “ductless” PV intake height up to 0.2 m above the floor will not significantly influence the quality of inhaled air and thermal comfort.  相似文献   

16.
In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 °C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (Tn) of the prayers is found to be 26.1 °C, while that for PMV is 23.3 °C. Discrepancy of these values is in fact about 2.8 °C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait.  相似文献   

17.
Conventional designers typically count on thermal equilibrium and require ventilation rates of a space to design ventilation systems for the space. This design, however, may not provide a conformable and healthy micro-environment for each occupant due to the non-uniformity in airflow, temperature and ventilation effectiveness as well as potential conflicts in thermal comfort, indoor air quality (IAQ) and energy consumption. This study proposes two new design methods: the constraint method and the optimization method, by using advanced simulation techniques—computational fluid dynamics (CFD) based multi-objective genetic algorithm (MOGA). Using predicted mean vote (PMV), percentage dissatisfied of draft (PD) and age of air around occupants as the design goals, the simulations predict the performance curves for the three indices that can thus determine the optimal solutions. A simple 2D office and a 3D aircraft cabin were evaluated, as demonstrations, which reveal both methods have superior performance in system design. The optimization method provides more accurate results while the constraint method needs less computation efforts.  相似文献   

18.
This paper describes tests of thermal comfort and air distribution performance of two relatively new occupant-controlled localized ventilation (also called task ventilation) systems. The first is a raisd-floor distribution system providing air through grilles in the floor panels, and the second is a desk-mounted unit supplying conditioned air at desktop level. The tests were performed in a new controlled environment chamber (CEC) having unique capabilities for detailed studies of space conditioning and thermal comfort in office environments. Measurements were made in a mockup of a typical partitioned open-plan office, and the resulting temperature and air velocity distributions are reported for a variety of system- and locally controlled conditions. Comfort model predictions are presented to describe the degree of environmental control and range of occupant comfort levels produced in the workstations. The results are also compared to those produced by a conventional ceiling supply system. The tests investigated the effects of supply volume, supply location, supply vent orientation, supply/return temperature difference, heat load density, and workstation size and layout. Temperature differences in the range of 1–2.5°C were observed between adjacent workstations, and local air velocities in the vicinity of outlets could exceed 3 m/s. Such wide-ranging values could violate existing comfort standards (ASHRAE, 1981; ISO, 1984), if strictly interpreted. However since these systems put the local thermal conditions within the workstations under the direct control of their occupants, it is recommended that the standards grant exceptions to such systems.  相似文献   

19.
Y. Cheng  Z. Lin 《Indoor air》2016,26(2):274-285
Room occupants' comfort and health are affected by the airflow. Nevertheless, they themselves also play an important role in indoor air distribution. This study investigated the interaction between the human body and room airflow under stratum ventilation. Simplified thermal manikin was employed to effectively resemble the human body as a flow obstacle and/or free convective heat source. Unheated and heated manikins were designed to fully evaluate the impact of the manikin at various airflow rates. Additionally, subjective human tests were conducted to evaluate thermal comfort for the occupants in two rows. The findings show that the manikin formed a local blockage effect, but the supply airflow could flow over it. With the body heat from the manikin, the air jet penetrated farther compared with that for the unheated manikin. The temperature downstream of the manikin was also higher because of the convective effect. Elevating the supply airflow rate from 7 to 15 air changes per hour varied the downstream airflow pattern dramatically, from an uprising flow induced by body heat to a jet‐dominated flow. Subjective assessments indicated that stratum ventilation provided thermal comfort for the occupants in both rows. Therefore, stratum ventilation could be applied in rooms with occupants in multiple rows.  相似文献   

20.
This field study was performed during the winter of 2000–2001 in order to investigate the thermal environment and thermal comfort in residential buildings in Harbin, northeast of China. A total of 120 participants provided 120 sets of physical data and subjective questionnaires. An indoor climate analyzer and a thermal comfort meter made in Denmark were used to collect the measured parameters of the indoor environment, the predicted mean vote (PMV), and predicted percentage of dissatisfied (PPD). The conclusions are as follows: males are less sensitive to temperature variations than females; the neutral operative temperature of males is 1 °C lower than that of females; Harbin subjects are as sensitive to temperature variations as the Beijing and Tianjin subjects; the minimum value of PPD (7.5%) is similar to the Tianjin occupants; both the sensitivity and the minimum value of PPD are lower than those of the foreign field studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号