首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 714 毫秒
1.
Yu J  Ouyang Q  Zhu Y  Shen H  Cao G  Cui W 《Indoor air》2012,22(2):110-118
It has been reported previously that people who are acclimated to naturally ventilated (NV) environments respond to hot and warm environments differently than people who are acclimated to air-conditioned (AC) environments. However, it is not clear whether physiological acclimatization contributes to this discrepancy. To study whether living and working in NV or AC environments for long periods of time can lead to different types of physiological acclimatization, and whether physiological acclimatization has an important influence on people's responses of thermal comfort, measurements of physiological reactions (including skin temperature, sweat rate, heart rate variability, and heat stress protein 70) and thermal comfort responses were conducted in a 'heat shock' environment (climate chamber) with 20 people (10 in the NV group and 10 in the AC group). The results showed that the NV group had a significantly stronger capacity for physiological regulation to the heat shock than the AC group. In other words, the NV group did not feel as hot and uncomfortable as the AC group did. These results strongly indicate that living and working in indoor thermal environments for long periods of time affects people's physiological acclimatization. Also, it appears that long-term exposure to stable AC environments may weaken people's thermal adaptability. PRACTICAL IMPLICATIONS: This study examined the psychological and physiological differences of thermal adaptability of people used to air-conditioned environments and naturally ventilated environments. The results suggested that long-term exposure to stable air-conditioned environments may weaken people's thermal adaptability. Therefore, it might be advantageous for people to spend less time in static air-conditioned environments; this is not only because of its possible deleterious impact on people's physiological adaptability, but also because the air-conditioners' high-energy consumption will contribute to the effects of global warming.  相似文献   

2.
This paper introduces a simplified model for underground temperature prediction in summer hot weather. The data of 14 observation sites show that the surface temperature curves are close to trapeziums, and surface temperatures are related to air temperatures. Therefore, approximated temperature trapeziums that are determined by high- and lowest air temperatures can be used to simulate the underground temperature variation. Two observation sites respectively in the urban and suburban areas were used as examples. Good agreement was obtained between simulated- and measured temperatures. Measured data indicate the average temperature under urban concrete surface is 3.70 °C greater than that of suburban bare surface. The deviation is due to the heat urban environment effect and different surfaces effect, which are about 1.68 °C and 2.02 °C, respectively. Combined with soil volumetric water content (wv), ‘Heat’ Islands associates with ‘Dry’ Islands, which means urban soil moisture is lower than suburban soil moisture (13.9%). According to the variation of wv and temperature deviation graphs, Urban Heat Island, ground surface types and rainfall are important factors that influence the underground soil moisture and temperatures.  相似文献   

3.
In this study, the heat stress and heat tolerance of 148 male volunteers were examined under different climatic conditions in a stainless steel climatic chamber. The conditions were 30 to 42° dry bulb temperature and 40 to 80 percent relative humidity. The subjects, aged from 19 to 26 years old, performed various activities at the metabolic heat of 175, 349 and 580 W, respectively. The exposure durations and resulting heat stress were determined by measuring oral temperature, skin temperature, heart rates, blood pressure and sweating responses. The study proposed physiological limit values at exposure limits. Moreover, the study suggested that physiological measures from the experiments should be applied to evaluate the classification of extreme heat working environments in China.  相似文献   

4.
Physical work in hot and humid environments imposes health risks, productivity falling and safety problems on workers. Protection of workers from heat related problems requires quantitative heat stress assessment of the workplace. In this paper, a new index-equivalent temperature (ET) is proposed to measure the environmental heat stress in indoor hot and humid environments. A climate chamber was built to simulate the indoor hot and humid environment. And the safe working time of 144 male volunteers were studied under different climatic conditions in the chamber. Cox regression method is adopted to obtain the impacts of variables on the safe working time. Then the new index-ET is proposed based on the Cox regression results. The correlations between the ET and the common used indexes are determined to test the validity of this new index. Finally the safe working time concerned with the ET is summarized. The results show that the new index gives physiological correlates and physical means. The ET developed in this paper has the potential to be a practical index to measure the environmental heat stress in indoor hot and humid environments.  相似文献   

5.
Thermal comfort, self‐reported acute health symptoms, cognitive performance, and physiological reactions were examined at four temperatures (26, 30, 33, and 37°C) at a relative humidity of 70%. Thirty‐two sub‐tropically acclimatized subjects experienced each condition for 175 minute, in balanced order, in a climatic chamber. The perception of heat gradually increased with increasing temperature, but the subjects felt hot only at 37°C. The temperature of 33°C was on average rated as acceptable and only just uncomfortable. The acceptability of air quality decreased linearly with increasing temperature. The intensity of acute health symptoms reported by the subjects increased with increasing temperature, but it was no more than moderate even at the highest temperature; dryness of skin and eye were alleviated. The eardrum temperature, skin temperature and moisture, heart rate, end‐tidal carbon dioxide, and weight loss increased significantly with increasing temperature, whereas the percentage of adjacent heart inter‐beat intervals differing by >50 ms decreased significantly. These results suggest that the perceived heat, self‐reported symptoms, and physiological reactions occurred concurrently. They show additionally that acclimatization to heat may shift the boundary of thermal discomfort to a higher temperature. The role of psychological adaptation and of the contextual aspects of this process still requires clarification in future experiments.  相似文献   

6.
In the hot and humid climate, stack ventilation is inefficient due to small temperature difference between the inside and outside of naturally ventilated buildings. Hence, solar induced ventilation is a feasible alternative in enhancing the stack ventilation. This paper aims to investigate the effectiveness of a proposed solar induced ventilation strategy, which combines a roof solar collector and a vertical stack, in enhancing the stack ventilation performance in the hot and humid climate. The methodology selected for the investigation is physical experimental modelling which was carried out in the actual environment. The results are presented and discussed in terms of two performance variables: air temperature and air velocity. The findings indicate that the proposed strategy is able to enhance the stack ventilation, both in semi-clear sky and overcast sky conditions. The highest air temperature difference between the air inside the stack and the ambient air (TiTo) is achieved in the semi-clear sky condition, which is about 9.9 °C (45.8 °C–35.9 °C). Meanwhile, in the overcast sky condition, the highest air temperature difference (TiTo) is 6.2 °C (39.3 °C–33.1 °C). The experimental results also indicate good agreement with the theoretical results for the glass temperature, the air temperature in the roof solar collector’s channel and the absorber temperature. The findings also show that wind has significant effect to the induced air velocity by the proposed strategy.  相似文献   

7.
Air-conditioning is frequently used as a means of adjusting indoor thermal environment in hot-and-humid areas. However, when entering an air-conditioned building from outdoors people may experience thermal discomfort and risk health consequence if the instantaneous change of air temperature exceeds the thermoregulatory capacity. A study was conducted to investigate the alteration in thermal perception and in thermoregulation that simultaneously occurred in response to temperature step in a thermal transient. In this study, two temperature down-steps from 32/28 to 24 °C and an up-step from 20 to 24 °C were created in a climatic chamber consisting of two microclimate-controlled rooms, and subjects were evaluated for change in thermal sensation as well as in skin physiological properties, including skin capillary blood flow (SCBF), skin moisture, transepidermal water loss (TEWL), and skin temperature over the course of acclimation. As the results show, a cold sensation overshot occurred in thermal sensation vote (TSV), skin temperature, and SCBF in 1 min after the temperature dropped from 32 to 24 °C. TSV correlated the best with skin temperature (r = 0.60) and moderately with skin moisture and TEWL (r = 0.42–0.54) when the temperature down-step reached 8 °C. TEWL acclimated in a two-stage pattern, demonstrating a difference between the sensational change and thermoregulation. The gender-specific influence occurred in thermoregulation but not in subjective sensation. The findings of the study suggest that thermoregulatory burden might be adequately controlled when the temperature step in thermal transition zone is limited to 4 °C or lower.  相似文献   

8.
Exposure to bacterial bioaerosols can have adverse effects on health, such as infectious diseases, acute toxic effects, and allergies. The search for ways of preventing and curing the harmful effects of bacterial bioaerosols has created a strong demand for the study and development of an efficient method of controlling bioaerosols. We investigated the thermal effects on bacterial bioaerosols of Escherichia coli and Bacillus subtilis by using a thermal electric heating system in continuous air flow. The bacterial bioaerosols were exposed to a surrounding temperature that ranged from 20 °C to 700 °C for about 0.3 s. Both E. coli and B. subtilis vegetative cells were rendered more than 99.9% inactive at 160 °C and 350 °C of wall temperature of the quartz tube, respectively. Although the data on bacterial injury showed that the bacteria tended to sustain greater damage as the surrounding temperature increased, Gram-negative E. coli was highly sensitive to structural injury but Gram-positive B. subtilis was slightly more sensitive to metabolic injury. In addition, the inactivation of E. coli endotoxins was found to range from 9.2% (at 200 °C) to 82.0% (at 700 °C). However, the particle size distribution and morphology of both bacterial bioaerosols were maintained, despite exposure to a surrounding temperature of 700 °C. Our results show that thermal heating in a continuous air flow can be used with short exposure time to control bacterial bioaerosols by rendering the bacteria and endotoxins to a large extent inactive. This result could also be useful for developing more effective thermal treatment strategies for use in air purification or sterilization systems to control bioaerosols.  相似文献   

9.
The contamination of hot water samples with Legionella spp. was studied in relation to temperature, total hardness, trace element concentrations (iron, zinc, manganese, and copper) and heterotrophic plate counts (HPC) at both 22 and 37 °C. Factor analysis and receiver operating characteristic (ROC) curves were used to establish the cut-off of water parameters as predictors for Legionella contamination. Legionella spp. was isolated in 194 out of 408 samples (47.5%), with Legionella pneumophila being the most common (92.8%). After multiple logistic regression analysis, the risk for legionellae colonisation was positively associated with Mn levels >6 μg l−1, HPC at 22 °C >27 CFU l−1, and negatively with temperature >55 °C and Cu levels >50 μg l−1. Multiple regression analysis revealed that Legionella spp. counts were positively associated with Mn, HPC at 37 °C and Zn and negatively associated with temperature. Only 1 out of the 97 samples (1%) having a Mn concentration, an HPC at 22 °C and an HPC at 37 °C below the respective median values exhibited a Legionella spp. concentration exceeding 104 CFU l−1vs. 41 out of the 89 samples (46.1%) with the three parameters above the medians. Our results show a qualitative and quantitative relationship between Legionella spp., the Mn concentration and heterotrophic plate counts in hot water samples from different buildings, suggesting that these parameters should be included in a water safety plan. The role of manganese in biofilm formation and its possible involvement in the mechanisms favouring Legionella survival and growth in water niches should be investigated further.  相似文献   

10.
Electro-dewatering is an energy-efficient technology in which an electric field can increase the dryness of biosolids from secondary wastewater treatment from 15% w/w to 30-50% w/w. Here, we address bacterial pathogen indicators inactivation (total coliforms, Escherichia coli and aerobic endospores) during electro-dewatering, investigating the roles of electrochemically generated oxidants, extreme pH, and high temperature (from Joule heating). Our results demonstrate that temperature is the primary factor affecting total coliforms and E. coli inactivation. First, several electro-dewatering cycles were used to increase sludge temperature to about 100 °C after 6 min, during which time the average pH decreased from 7 to 3.6 after 10 min. Total coliforms and E. coli MPNs reached their detection limits after 6 min (with 4-5 logs of inactivation for total coliforms and 3-4 logs for E. coli). In contrast, aerobic endospores were not inactivated under these conditions; rather, their germination appeared to be stimulated by 6-8 min of electro-dewatering. Second, the dewatering cake was separated into four horizontal layers. After 8 min of electro-dewatering, the pH in the top layers decreased to 3, whereas the pH in the bottom layers increased to 8. Inactivation of total coliforms and E. coli in the sludge cake was similar in all layers, increasing with time, suggesting that oxidants and extreme pH are secondary inactivation factors. Finally, electrodes were cooled to maintain a temperature less than 34 °C. Although pH decreased significantly after 12 min of electro-dewatering, there was no significant bacterial pathogen indicator inactivation at low temperature.  相似文献   

11.
Ge H  Jensen PD  Batstone DJ 《Water research》2011,45(4):1597-1606
It is well established that waste activated sludge with an extended sludge age is inherently slow to degrade with a low extent of degradation. Pre-treatment methods can be used prior to anaerobic digestion to improve the efficiency of activated sludge digestion. Among these pre-treatment methods, temperature phased anaerobic digestion (TPAD) is one promising method with a relatively low energy input and capital cost. In this study, an experimental thermophilic (50-70 °C)-mesophilic system was compared against a control mesophilic-mesophilic system. The thermophilic-mesophilic system achieved 41% and 48% volatile solids (VS) destruction during pre-treatment of 60 °C and 65 °C (or 70 °C) respectively, compared to 37% in the mesophilic-mesophilic TPAD system. Solubilisation in the first stage was enhanced during thermophilic pre-treatment (15% at 50 °C and 27% at 60 °C, 65 °C and 70 °C) over mesophilic pre-treatment (7%) according to a COD balance. This was supported by ammonia-nitrogen measurements. Model based analysis indicated that the mechanism for increased performance was due to an increase in hydrolysis coefficient under thermophilic pre-treatment of 60 °C (0.5 ± 0.1 d−1), 65 °C (0.7 ± 0.2 d−1) and 70 °C (0.8 ± 0.2 d−1) over mesophilic pre-treatment (0.2 ± 0.1 d−1), and thermophilic pre-treatment at 50 °C (0.12 ± 0.06 d−1).  相似文献   

12.
The aim of this paper is to study the thermal comfort levels achieved in open spaces by means of evaporative wind towers. These systems have been installed in an urban area characterized by its hot and dry summer climate. Conventional wind tower designs for enclosed and semi-enclosed spaces have been adapted for this new installation. These systems are usually composed of a few number of wind towers, this one however is composed by a group of sixteen, increasing the total dimensions of the installation. To integrate this construction into the urban public area, it was built in a circular arrangement, creating an activity and meeting point for pedestrians. This passive system was monitored during the summer of 2008. Measurements of temperature, solar radiation, humidity and wind speed were analyzed. During the analyzed period, the average cooling efficiency of the system varied from 38% at the exit of the tower, to 32% at 1 m high. At this last position, the average exceeds the wet bulb temperature up to 8 °C with an increase of moisture around 27%. The shading effect produced by the global installation itself has been modeled theoretically to evaluate the incident solar radiation at the pedestrian area. Two indices have been applied to predict the perception of heat and cold in the south pedestrian zone: Heat index and TS index. In this position, both variables approached the thermal sensation to the comfort levels by the use of these passive strategies when ambient conditions are hot and dry.  相似文献   

13.
This paper investigated a desiccant solution regenerator using hot air to concentrate diluted desiccant solution, aiming to utilize the waste heat of hot air, such as the hot air from the condensers of vapor compression refrigeration systems. To verify the feasibility of the utilization of the hot air for the desiccant solution regeneration and disclose the performance of such kind of regenerators, performance analysis was conducted numerically by a validated mathematical model and parametric distribution of the air in a typical case was explored. The results showed that it was possible to use hot air for the desiccant solution regeneration when the requirement of the lowest inlet solution temperature was met and a typical case showed that the suggested hot air temperature was around 65 °C. Effects of main operation parameters on the regeneration thermal efficiency and regeneration rate were discussed and the result showed the regeneration thermal efficiency could achieve the maximum (ηreg, max) when the R was around 8 and lower flow rate of the desiccant could achieve higher ηreg, max. In addition, effects of dimensions of the regenerator on the regeneration performance were disclosed and some suggestions of design of the regenerators were introduced based on the study.  相似文献   

14.
A transient analytical model is presented to study the effectiveness of an even shape greenhouse used for heating the aquaculture pond during extreme winters. The model was solved for the climatic conditions of Delhi (Latitude: 28°35′N), representing the northern India (comprising the states of Haryana, Punjab, Uttarakhand and Himachal Padesh) for the typical day (20th January) of winter. A simple trapezoidal design of aquaculture pond is proposed. Parametric studies involved the effects of length, breadth, depth, inclination of lining of fishpond, depth of water and air change in the greenhouse on the water heating in the fishpond. The performance of fishpond was assessed in terms of temperature gain, mean thermal efficiency and thermal load leveling. The optimum parameters for fishpond were 30 m length, 16 m breadth, 1.25 m depth, 1.0 m water depth, 75° lining inclination, and 8 air changes per hour for maximum temperature gain, maximum thermal efficiency and minimum thermal load leveling. A 20 °C rise in water temperature could be achieved during the day and 11 °C in the month of January. The maximum heat gain and loss are at around 16:00 and 7:00 h of the days, respectively.  相似文献   

15.
Earthy odor compounds production and loss in three cyanobacterial cultures   总被引:2,自引:0,他引:2  
Z Li  P Hobson  W An  MD Burch  J House  M Yang 《Water research》2012,46(16):5165-5173
Geosmin and 2-methylisoborneol (MIB) related odor events caused by cyanobacteria have been a very common problem to water supply. This paper investigated the effects of temperature (18 and 25 °C) and light intensity (10 and 100 μmol photons m−2 s−1) on the production behaviors of earthy odor compounds by three odorous cyanobacteria, i.e., the geosmin-producing planktonic Anabaena circinalis (Ana 318), geosmin-producing benthic Phormidium amoenum (Pho 012) and MIB-producing benthic Phormidium sp. (Pho 689). At the same time, the effects of biodegradation and volatilization on the fates of the released odor compounds in water were also evaluated. The combination of high temperature (25 °C) and light intensity (100 μmol photons m−2 s−1) favored the growth of the three cyanobacteria and the production of chl-a and odor compounds. However, higher chl-a and odor yields (average odor compounds per cell) were achieved for the two benthic cyanobacteria at the temperature of 18 °C. Most of geosmin was included within the cells for Ana 318 (95-99%) and Pho 012 (85-60%), while only 20-40% MIB was bound to the cells for Pho 689. The half-life times of MIB and geosmin due to volatilization varied between 18.8 and 35.4 days, while 8 out of 10 samples exhibited a half-life time (t1/2) for geosmin biodegradation shorter than 1 day (0.38-15.0 h), showing that biodegradation could affect the fate of geosmin significantly in aquatic environments. In comparison, biodegradation of MIB was much slower (t1/2: 122-2166 h). Denaturing gradient gel electrophoresis (DGGE) analysis showed that Pseudomonas- and Sphingomonas-like bacteria coexisted with cyanobacteria in the cultures, and may have played an important role in geosmin/MIB biodegradation. The result of this study will be helpful for better understanding and managing the earthy odor problems caused by cyanobacteria in water supply.  相似文献   

16.
Desert mosses are components of biological soil crusts (BSCs) and their ecological functions make assessment and protection of these mosses a high-ranking management priority in desert regions. Drying is thought to be useful for desert mosses surviving heat shock. In this study, we investigated the role of drying by monitoring the responses of physiological characters and asexual reproduction in the typical desert moss Syntrichia caninervis. Heat significantly decreased chlorophyll content and weakened rapid recovery of photochemical activity, and increased carotenoid content and membrane permeability. Lethal temperatures significantly destroyed shoot regeneration potential. In comparison with heat alone, drying significantly increased protonema emergence time and depressed protonema emergence area. Drying combined with heat accelerated water loss, followed by a decrease of photosynthetic activity. Drying had different influences on membrane permeability at different temperatures. When moss leaves were subjected to a combined stress of drying and heat shock, photosynthesis was maintained mainly due to the effects of drying on physiological activity although the cellular morphological integrity was affected. Drying caused opposing effects on moss physiological and reproductive characteristics. On the one hand, drying caused a positive synergistic effect with heat shock when the temperature was below 40 °C. On the other hand, drying showed antagonism with heat shock when the moss was subjected to temperatures higher than 40 °C. These findings may help in understanding the survival mechanism of dessert mosses under heat shock stress which will be helpful for the artificial reconstruction of BSCs.  相似文献   

17.
Most peri-alpine shallow aquifers fed by rivers are oxic and the drinking water derived by riverbank filtration is generally of excellent quality. However, observations during past heat waves suggest that water quality may be affected by climate change due to effects on redox processes such as aerobic respiration, denitrification, reductive dissolution of manganese(III/IV)- and iron(III)(hydr)oxides that occur during river infiltration. To assess the dependence of these redox processes on the climate-related variables temperature and discharge, we performed periodic and targeted (summer and winter) field sampling campaigns at the Thur River, Switzerland, and laboratory column experiments simulating the field conditions. Typical summer and winter field conditions could be successfully simulated by the column experiments. Dissolved organic matter (DOM) was found not to be a major electron donor for aerobic respiration in summer and the DOM consumption did not reveal a significant correlation with temperature and discharge. It is hypothesized that under summer conditions, organic matter associated with the aquifer material (particulate organic matter, POM) is responsible for most of the consumption of dissolved oxygen (DO), which was the most important electron acceptor in both the field and the column system. For typical summer conditions at temperatures >20 °C, complete depletion of DO was observed in the column system and in a piezometer located only a few metres from the river. Both in the field system and the column experiments, nitrate acted as a redox buffer preventing the release of manganese(II) and iron(II). For periodic field observations over five years, DO consumption showed a pronounced temperature dependence (correlation coefficient r = 0.74) and therefore a seasonal pattern, which seemed to be mostly explained by the temperature dependence of the calculated POM consumption (r = 0.7). The river discharge was found to be highly and positively correlated with DO consumption (r = 0.85), suggesting an enhanced POM input during flood events. This high correlation could only be observed for the low-temperature range (T < 15 °C). For temperatures >15 °C, DO consumption was already high (almost complete) and the impact of discharge could not be resolved. Based on our results, we estimate the risk for similar river-infiltration systems to release manganese(II) and iron(II) to be low during future average summer conditions. However, long-lasting heat waves might lead to a consumption of the nitrate buffer, inducing a mobilization of manganese and iron.  相似文献   

18.
The Sb leaching from polyethylene terephthalate (PET) package material into 10 different brands of still (non-carbonated) and sparkling (carbonated) Hungarian mineral water purchased in supermarkets was investigated by inductively coupled plasma sector field mass spectrometry (ICP-SF-MS). The Sb concentration measured in PET package materials varied between 210 and 290 mg/kg. Generally, the Sb concentration of still mineral water was lower than that of sparkling in the case of identical storage time. For modelling improper storage conditions, storage time (10-950 days), temperature (22 °C-70 °C), illumination (dark vs. 23 W daylight lamp for 116 h) as well as bottle volume (0.5, 1.0 and 1.5 L) were taken into consideration. Under certain extreme light and temperature storage conditions, the Sb concentration of some samples exceeded the concentration value of 2 ng/mL. The extent of Sb leaching from the PET recipients of different brands of mineral water can differ by even one order of magnitude in experiments conducted under the same conditions. Thus, the adequate selection of the polymer used for the production of the PET bottle for the solar water disinfection (SODIS) procedure seems to ensure low Sb levels in the water samples.  相似文献   

19.
1,4-Dioxane biodegradation was investigated in microcosms prepared with groundwater and soil from an impacted site in Alaska. In addition to natural attenuation conditions (i.e., no amendments), the following treatments were tested: (a) biostimulation by addition of 1-butanol (a readily available auxiliary substrate) and inorganic nutrients; and (b) bioaugmentation with Pseudonocardia dioxanivorans CB1190, a well-characterized dioxane-degrading bacterium, or with Pseudonocardia antarctica DVS 5a1, a bacterium isolated from Antarctica. Biostimulation enhanced the degradation of 50 mg L−1 dioxane by indigenous microorganisms (about 0.01 mg dioxane d−1 mg protein−1) at both 4 and 14 °C, with a simultaneous increase in biomass. A more pronounced enhancement was observed through bioaugmentation. Microcosms with 50 mg L−1 initial dioxane (representing source-zone contamination) and augmented with CB1190 degraded dioxane fastest (0.16 ± 0.04 mg dioxane d−1 mg protein−1) at 14 °C, and the degradation rate decreased dramatically at 4 °C (0.021 ± 0.007 mg dioxane d−1 mg protein−1). In contrast, microcosms with DVS 5a1 degraded dioxane at similar rates at 4 °C and 14 °C (0.018 ± 0.004 and 0.015 ± 0.006 mg dioxane d−1 mg protein−1, respectively). DVS 5a1 outperformed CB1190 when the initial dioxane concentration was low (500 μg L−1, which is representative of the leading edge of plumes). This indicates differences in competitive advantages of these two strains. Natural attenuation microcosms also showed significant degradation over 6 months when the initial dioxane concentration was 500 μg L−1. This is the first study to report the potential for dioxane bioremediation and natural attenuation of contaminated groundwater in sensitive cold-weather ecosystems such as the Arctic.  相似文献   

20.
Klitzke S  Fastner J 《Water research》2012,46(5):1549-1555
One possible consequence of increasing water temperatures due to global warming in middle Europe is the proliferation of cylindrospermopsin-producing species from warmer regions. This may lead to more frequent and increased cylindrospermopsin (CYN) concentrations in surface waters. Hence, efficient elimination of CYN is important where contaminated surface waters are used as a resource for drinking water production via sediment passage. Sediments are often characterized by a lack of oxygen and low temperature (i.e. approx. 10 °C). The presence of dissolved organic carbon (DOC) is not only known to enhance but also to retard contaminant degradation by influencing the extent of lag phases. So far CYN degradation has only been investigated under oxic conditions and at room temperature. Therefore, the aim of our experiments was to understand CYN degradation, focusing on the effects of i) anoxic conditions, ii) low temperature (i.e. 10 °C) in comparison to room temperature (23 ± 4 °C) and iii) DOC on lag phases. We used two natural sandy sediments (virgin and preconditioned) and surface water to conduct closed-loop column experiments. Anoxic conditions either inhibited CYN degradation completely or retarded CYN breakdown in comparison to oxic conditions (T1/2 (oxic) = 2.4 days, T1/2 (anoxic) = 23.6 days). A decrease in temperature from 20 °C to 10 °C slowed down degradation rates by a factor of 10. The presence of DOC shortened lag phases in virgin sediments at room temperature but induced a lag phase in preconditioned sediments at 10 °C, indicating potential substrate competition. These results show that information on physico-chemical conditions in sediments is crucial to assess the risk of CYN breakthrough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号