首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This paper presents the design of a low-power ultra-wideband low noise amplifier in 0.18-mum CMOS technology. The inductive degeneration is applied to the conventional distributed amplifier design to reduce the broadband noise figure under low power operation condition. A common-source amplifier is cascaded to the distributed amplifier to improve the gain at high frequency and extend the bandwidth. Operated at 0.6V, the integrated UWB CMOS LNA consumes 7mW. The measured gain of the LNA is 10dB with the bandwidth from 2.7 to 9.1GHz. The input and output return loss is more than 10dB. The noise figure of the LNA varies from 3.8 to 6.9dB, with the average noise figure of 4.65dB. The low power consumption of this work leads to the excellent figure of gain-bandwidth product (GBP) per milliwatt  相似文献   

2.
An ultra-wideband (UWB) 3.1- to 10.6-GHz low-noise amplifier (LNA) employing a common-gate stage for wideband input matching is presented in this paper. Designed in a commercial 0.18-/spl mu/m 1.8-V standard RFCMOS technology, the proposed UWB LNA achieves fully on-chip circuit implementation, contributing to the realization of a single-chip CMOS UWB receiver. The proposed UWB LNA achieves 16.7/spl plusmn/0.8 dB power gain with a good input match (S11<-9 dB) over the 7500-MHz bandwidth (from 3.1 GHz to 10.6 GHz), and an average noise figure of 4.0 dB, while drawing 18.4-mA dc biasing current from the 1.8-V power supply. A gain control mechanism is also introduced for the first time in the proposed design by varying the biasing current of the gain stage without influencing the other figures of merit of the circuit so as to accommodate the UWB LNA in various UWB wireless transmission systems with different link budgets.  相似文献   

3.
低噪声放大器是超宽带接收机系统中最重要的模块之一,设计了一种可应用于3.1~5.2GHz频段超宽带可变增益低噪声放大器。电路输入级采用共栅结构实现超宽带输入匹配,并引入电流舵结构实现了放大器的可变增益。仿真基于TSMC 0.18μm RF CMOS工艺。结果表明,在全频段电路的最大功率增益为10.5dB,增益平坦度小于0.5dB,噪声系数小于5dB,输入反射系数低于-15dB,在1.8V电源电压下,功耗为9mW。因此,该电路能够在低功耗超宽带射频接收机系统中应用。  相似文献   

4.
在分析各种超宽带(UWB)接收机系统结构的基础上,提出了一种低功耗IR-UWB接收机结构.该结构基于非相干通信机制,使用自混频技术和脉冲宽度调制方式(PPM).在该结构中,低噪声放大器(LNA)的低功耗优化是系统低功耗实现的关键.综合分析各种宽带LNA结构,提出了一种低功耗LNA设计.该LNA采用65 nmCMOS标准...  相似文献   

5.
An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system   总被引:1,自引:0,他引:1  
An ultra-wideband (UWB) CMOS low noise amplifier (LNA) topology that combines a narrowband LNA with a resistive shunt-feedback is proposed. The resistive shunt-feedback provides wideband input matching with small noise figure (NF) degradation by reducing the Q-factor of the narrowband LNA input and flattens the passband gain. The proposed UWB amplifier is implemented in 0.18-/spl mu/m CMOS technology for a 3.1-5-GHz UWB system. Measurements show a -3-dB gain bandwidth of 2-4.6GHz, a minimum NF of 2.3 dB, a power gain of 9.8 dB, better than -9 dB of input matching, and an input IP3 of -7dBm, while consuming only 12.6 mW of power.  相似文献   

6.
采用OMMIC公司提供的0.2μm GaAs PHEMT工艺(fT=60 GHz)设计并实现了一种适用于宽带无线通信系统接收前端的低噪声放大器。在3.1~10.6 GHz的频带内测试结果如下:最高增益为13 dB;增益波动<2dB;输入回波损耗S11<-11 dB;输出回波损耗S22<-16 dB;噪声系数NF<3.9 dB。5 V电源供电,功耗为120mW。芯片面积为0.5 mm×0.9 mm。与近期公开发表的宽带低噪声放大器测试结果相比较,本电路结构具有芯片面积小、工作带宽大、噪声系数低的优点。  相似文献   

7.
A 3-5 GHz broadband flat gain differential low noise amplifier (LNA) is designed for the impulse radio uitra-wideband (IR-UWB) system. The gain-flatten technique is adopted in this UWB LNA. Serial and shunt peaking techniques are used to achieve broadband input matching and large gain-bandwidth product (GBW). Feedback networks are introduced to further extend the bandwidth and diminish the gain fluctuations. The prototype is fabricated in the SMIC 0.18 μm RF CMOS process. Measurement results show a 3-dB gain bandwidth of 2.4-5.5 GHz with a maximum power gain of 13.2 dB. The excellent gain flatness is achieved with ±0.45 dB gain fluctuations across 3-5 GHz and the minimum noise figure (NF) is 3.2 dB over 2.5-5 GHz. This circuit also shows an excellent input matching characteristic with the measured S11 below-13 dB over 2.9-5.4 GHz. The input-referred 1-dB compression point (IPldB) is -11.7 dBm at 5 GHz. The differential circuit consumes 9.6 mA current from a supply of 1.8 V.  相似文献   

8.
This paper presents an inductorless low-noise amplifier (LNA) design for an ultra-wideband (UWB) receiver front-end. A current-reuse gain-enhanced noise canceling architecture is proposed, and the properties and limitations of the gain-enhancement stage are discussed. Capacitive peaking is employed to improve the gain flatness and -3-dB bandwidth, at the cost of absolute gain value. The LNA circuit is fabricated in a 0.13-mum triple-well CMOS technology. Measurement result shows that a small-signal gain of 11 dB and a -3-dB bandwidth of 2-9.6 GHz are obtained. Over the -3-dB bandwidth, the input return loss is less than -8.3 dB, and the noise figure is 3.6-4.8 dB. The LNA consumes 19 mW from a low supply voltage of 1.5 V. It is shown that the LNA designed without on-chip inductors achieves comparable performances with inductor-based designs. The silicon area is reduced significantly in the inductorless design, the LNA core occupies only 0.05 mm2, which is among the smallest reported designs.  相似文献   

9.
A miniature Q-band low noise amplifier (LNA) using 0.13-/spl mu/m standard mixed signal/radio frequency complementary metal-oxide-semiconductor (CMOS) technology is presented in this letter. This three-stage common source thin-film microstrip LNA achieves a peak gain of 20dB at 43GHz with a compact chip size of 0.525mm/sup 2/. The 3-dB frequency bandwidth ranges from 34 to 44GHz and the minimum noise figure is 6.3dB at 41GHz. The LNA outperforms all the reported commercial standard CMOS Q-band LNAs, with the highest gain, highest output IP3, and smallest chip size.  相似文献   

10.
Three-dimensional (3-D) microwave monolithic integrated circuit (MMIC) technology, that incorporates slits in the ground metal, was applied to K-band low noise amplifier (LNA) and I/Q mixer to provide a low cost solution for various K-band receivers such as for P-to-P radio, WLAN, and UWB sensors. The LNA incorporates a quasicoplanar stub in the input-matching network, improving the noise figure by 1 dB. This low-noise amplifier (LNA) exhibits a noise figure of 2.5 dB with an associated gain of 16 dB and an area of 0.75/spl times/0.65 mm/sup 2/. The I/Q resistive mixer incorporates a broadside 3-dB coupler with a 22-/spl mu/m-wide slit in the ground metal beneath the coupled thin-film micro-strip (TFMS) lines (patent pending). The insertion loss of the 3 dB coupler is 0.75 dB. The I/Q mixer exhibits a conversion loss of less than 14 dB at 0.1-2.0GHz IF frequencies for 2-dBm local input power. These LNA and mixer potentially make it easier to integrate receiver functions in a die.  相似文献   

11.
A direct-conversion receiver for DVB-H   总被引:3,自引:0,他引:3  
A fully integrated low-power ultrahigh-frequency (UHF) tuner integrated circuit (IC) design for the digital video broadcasting-handheld (DVB-H) market is presented. A direct-conversion receiver is chosen over classical digital video broadcasting-terrestrial (DVB-T) architectures. The tuner IC covers UHF bands IV/V. The solution is based on a radio frequency integrated circuit (RFIC) and external low-noise amplifier (LNA) to meet the noise figure (NF) specification of 5 dB, IIP3 of 4dBm, and Gain of 89 dB. The IC includes an LNA, dual quadrature mixers, multiple bandwidth baseband (BB) filtering, three 4X voltage-controlled oscillators (VCOs), integer phase-locked loop (PLL), and reference oscillator. The design is implemented in a SiGe:C bipolar complementary metal oxide semiconductor (BiCMOS) technology and the die area is 11.5 mm/sup 2/.  相似文献   

12.
A software-defined radio receiver is designed from a low-power ADC perspective, exploiting programmability of windowed integration sampler and clock-programmable discrete-time analog filters. To cover the major frequency bands in use today, a wideband RF front-end, including the low-noise amplifier (LNA) and a wide tuning-range synthesizer, spanning over 800 MHz to 6 GHz is designed. The wideband LNA provides 18-20 dB of maximum gain and 3-3.5 dB of noise figure over 800 MHz to 6 GHz. A low 1/f noise and high-linearity mixer is designed which utilizes the passive mixer core properties and provides around +70 dBm IIP2 over the bandwidth of operation. The entire receiver circuits are implemented in 90-nm CMOS technology. Programmability of the receiver is tested for GSM and 802.11g standards  相似文献   

13.
采用SMIC 0.18 μm CMOS工艺设计了一个低电压低功耗的低噪声放大器(Locked Nucleic Acid,LNA).分析了在低电压条件下LNA的线性度提高及噪声优化技术.使用Cadence SpectreRF仿真表明,在2.4 GHz的工作频率下,功率增益为19.65 dB,输入回波损耗S11为-12.18 dB,噪声系数NF为1.2 dB,1 dB压缩点为-17.99 dBm,在0.6V的供电电压下,电路的静态功耗为2.7 mW,表明所设计的LNA在低电压低功耗的条件下具有良好的综合性能.  相似文献   

14.
A low-power,$X$-band low-noise amplifier (LNA) is presented. Implemented with 180 GHz silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs), the circuit occupies 780$times hbox660 muhboxm^2$. The LNA exhibits a gain of 11.0 dB at 9.5 GHz, a mean noise figure of 2.78 dB across$X$-band, and an input third-order intercept point of$-$9.1 dBm near 9.5 GHz, while dissipating only 2.5 mW. The low-power performance of this LNA, together with its natural total-dose radiation immunity, demonstrates the potential of SiGe HBT technology for near-space radar applications.  相似文献   

15.
3.1~10.6GHz超宽带低噪声放大器的设计   总被引:1,自引:0,他引:1  
韩冰  刘瑶 《电子质量》2012,(1):34-37
基于SIMC0.18μmRFCMOS工艺技术,设计了可用于3.1—10.6GHzMB—OFDM超宽带接收机射频前端的CMOS低噪声放大器(LNA)。该LNA采用三级结构:第一级是共栅放大器,主要用来进行输入端的匹配;第二级是共源共栅放大器,用来在低频段提供较高的增益;第三级依然为共源共栅结构,用来在高频段提供较高的增益,从而补偿整个频带的增益使得增益平坦度更好。仿真结果表明:在电源电压为1.8v的条件下,所设计的LNA在3.1~10.6GHz的频带范围内增益(521)为20dB左右,具有很好的增益平坦性f±0.4dB),回波损耗S11、S22均小于-10dB,噪声系数为4.5dB左右,IIP3为-5dBm,PIdB为0dBm。  相似文献   

16.
A 3.1-10.6 GHz ultra-wideband low-noise amplifier (UWB LNA) with excellent phase linearity property (group-delay variation is only plusmn 16.7 ps across the whole band) using standard 0.13 mum CMOS technology is reported. To achieve high and flat gain and small group-delay variation at the same time, the inductive peaking technique is adopted in the output stage for bandwidth enhancement. The UWB LNA achieved input return loss (S11) of -17.5 to -33.6 dB, output return loss (S22) of -14.4 to -16.3 dB, flat forward gain (S22) of 7.92 plusmn 0.23 dB, and reverse isolation (S12) of -25.8 to -41.9 dB over the 3.1-10.6 GHz band of interest. A state-of-the-art noise figure (NF) of 2.5 dB was achieved at 10.5 GHz.  相似文献   

17.
A 3-6 GHz CMOS broadband low noise amplifier (LNA) for ultra-wideband (UWB) radio is presented. The LNA is fabricated with the 0.18 /spl mu/m 1P6M standard CMOS process. Measurement of the CMOS LNA is performed using an FR-4 PCB test fixture. From 3 to 6 GHz, the broadband LNA exhibits a noise figure of 4.7-6.7 dB, a gain of 13-16 dB, and an input/output return loss higher than 12/10 dB, respectively. The input P/sub 1 dB/ and input IP3 (IIP3) at 4.5 GHz are about -14 and -5 dBm, respectively. The DC supply is 1.8 V.  相似文献   

18.
利用改进的小信号模型对采用100nmInAlAs/InGaAs/InP工艺设计实现的PHEMTs器件进行建模, 并设计实现了一款W波段单片低噪声放大器进行信号模型的验证。为了进一步改善信号模型低频S参数拟合差的精度, 该小信号模型考虑了栅源和栅漏二极管微分电阻, 在等效电路拓扑中分别用Rfs和Rfd表示.为了验证模型的可行性, 基于该信号模型研制了W波段低噪声放大器单片.在片测试结果表明:最大小信号增益为14.4dB@92.5GHz, 3dB带宽为25GHz@85-110GHz.而且, 该放大器也表现出了良好的噪声特性, 在88GHz处噪声系数为4.1dB, 相关增益为13.8dB.与同频段其他芯片相比, 该放大器单片具有宽3dB带宽和高的单级增益.  相似文献   

19.
This investigation explores a low-noise amplifier (LNA) with a coplanar waveguide (CPW) structure, in which a two-stage amplifier is associated with a cascade schematic circuit, implemented in 0.15-μm GaAs pseudo-morphic high electron mobility transistor (pHEMT) technology in a Ka-band (26.5-40.0 GHz) microwave monolithic integrated circuit (MMIC). The experimental results demonstrate that the proposed LNA has a peak gain of 12.53 dB at 30 GHz and a minimum noise figure of 3.3 dB at 29.5 GHz, when biased at a V_(ds) of 2 V and a V_(gs) of-0.6 V with a drain current of 16 mA in the circuit. The results show that the millimeter-wave LNA with coplanar waveguide structure has a higher gain and wider bandwidth than a conventional circuit. Finally, the overall LNA characterization exhibits high gain and low noise, indicating that the LNA has a compact circuit and favorable RF characteristics. The strong RF character exhibited by the LNA circuit can be used in millimeter-wave circuit applications.  相似文献   

20.
Low-power W-band CPWG InAs/AlSb HEMT low-noise amplifier   总被引:1,自引:0,他引:1  
We present the development of a low-power W-band low-noise amplifier (LNA) designed in a 200-nm InAs/AlSb high electron mobility transistor (HEMT) technology fabricated on a 50-/spl mu/m GaAs substrate. A single-stage coplanar waveguide with ground (CPWG) LNA is described. The LNA exhibits a noise figure of 2.5 dB and an associated gain of 5.6 dB at 90 GHz while consuming 2.0 mW of total dc power. This is, to the best of our knowledge, the lowest reported noise figure for an InAs/AlSb HEMT LNA at 90 GHz. Biased for maximum gain, the single-stage amplifier presents 6.7-dB gain and an output 1-dB gain compression point (P1dB) of -6.7dBm at 90 GHz. The amplifier provides broad-band gain, greater than 5dB over the entire W-band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号