首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 248 毫秒
1.
采用75%四氢呋喃(THF)和25%N,N-二甲基甲酰胺(DMF)的混合溶液作溶剂,通过气流-静电纺丝法制备了苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)超细纤维。利用扫描电镜(SEM),研究了溶液浓度、电压、接收距离(喷丝孔到接收板的距离)、喷丝孔内径对静电纺纤维的直径和形貌的影响。研究发现:溶液浓度对电纺纤维的直径和形貌有非常重要的影响,当溶液浓度由10%增加到18%时,电纺纤维平均直径随之成线性增加;当电压由23.8kV增加到33.8kV时,纤维平均直径先减小后增加。最佳工艺条件为:溶液质量分数为14%,电压为28.8kV,接收距离为20cm,喷丝孔内径为0.27mm,所得SBS电纺超细纤维平均直径为429nm。  相似文献   

2.
《合成纤维工业》2016,(1):31-34
以质量比为2∶1的丙酮/N,N-二甲基乙酰胺混合溶液为溶剂配制二醋酸纤维素(CA)溶液,采用静电纺丝制备CA纳米纤维,探讨了CA浓度、纺丝电压、接收距离和溶液推进速度等工艺条件对CA纳米纤维形貌、直径及其分布的影响。结果表明:CA纳米纤维的直径随CA浓度增加而增大,随纺丝电压增大而减小;适当的接收距离和溶液推进速度可以获得直径较小且分布均匀的纤维;当CA质量分数为11%、纺丝电压为30 k V、接收距离为15 cm、溶液推进速度为0.010 m L/min时,纺丝效果好,纤维平均直径约130 nm,且直径分布较均匀。  相似文献   

3.
采用四氢呋喃和无水乙醇为溶剂,利用静电纺丝法制备了聚己内酯(PCL)/聚乙二醇(PEG)共混纳米纤维。研究了共混配比、溶液浓度、无水乙醇的加入以及电纺电压、接收距离等工艺参数对纤维形态和性能的影响。测试结果表明:聚乙二醇和聚己内酯以一定比例共混后改善了聚己内酯纤维毡的亲水性和细胞相容性;随着纺丝原液浓度增加,电纺产品由高分子微/纳米液滴结构渐变为珠状结构较少的平滑纤维,平均纤维直径逐渐增大;一定范围内,纤维平均直径随电压的上升而增大,但与接收距离关系不大;此外,加入无水乙醇后,共混溶液电导率增加,有利于喷射流的劈裂,减少了珠状结构的数量。  相似文献   

4.
采用四氢呋喃和无水乙醇为溶剂,利用静电纺丝法制备了聚己内酯(PCL)/聚乙二醇(PEG)共混纳米纤维。研究了共混配比,溶液浓度,无水乙醇的加入以及电纺电压,接收距离等工艺参数对纤维形态和性能的影响。测试结果表明:聚乙二醇和聚己内酯以一定比例共混后改善了聚己内酯纤维毡的亲水性和细胞相容性;随着纺丝原液浓度增加,电纺产品由高分子微/纳米液滴结构渐变为珠状结构较少的平滑纤维,平衡纤维直径逐渐增大;一定范围内,纤维平均直径随电压的上升而增大,但与接收距离关系不大;此外,加入无水乙醇后,共混溶液电导率增加,有利于喷射流的劈裂,减少了珠状结构的数量。  相似文献   

5.
通过静电纺丝方法,将氯化锂/N,N–二甲基乙酰胺(Li Cl/DMAc)溶解间位芳纶(PMIA)制备了PMIA纳米纤维,探索了溶液浓度、接收距离、纺丝电压及接收速度等工艺参数对纤维形貌及其直径分布的影响。通过扫描电子显微镜观察了PMIA纳米纤维形貌及应用Image-J软件测量统计了PMIA纤维直径。结果表明,溶液浓度为8%~10%、纺丝电压为16~18 k V、接收距离为15~20 cm,接收速度60~80 r/min的范围内,间位芳纶纳米纤维成型良好,直径分布范围为100~120 nm;PMIA纳米纤维直径随着溶液浓度的减小、静电电压的增加而减小,随着接收速度的增加纤维取向增加。  相似文献   

6.
采用溶液静电纺丝法制备了聚乙烯吡咯烷酮(PVP)、聚氧化乙烯(PEOX)和聚乙烯醇(PVAL)纤维,研究了溶液浓度、外加电压和接收距离等参数对纤维形貌和直径的影响。结果表明,在选定的参数范围内,三种聚合物纤维的平均直径随溶液浓度的增大而增大,当PVP/乙醇溶液浓度为40%,PEOX溶液浓度为6%和8%,PVAL溶液浓度为8%和10%时,制得的三种纤维具有较好的形貌且其平均直径均小于1 μm。外加电压不高于30 kV时,PVP纤维的平均直径随外加电压的增大而增大,PEOX和PVAL纤维的平均直径随外加电压的增加先增大后减小。随着接收距离的增大,PVP纤维的平均直径先减小后增大,PEOX和PVAL纤维的平均直径先增大后减小。三种纤维所需的工艺参数水平不相同,其中,PVP纺丝所需溶液浓度高于PEOX和PVAL,PEOX纺丝所需外加电压和接收距离高于PVP和PVAL。  相似文献   

7.
利用静电纺丝法制备了超细聚ε-己内酯(PCL)纤维;借助扫描电镜仪和差示扫描量热仪表征了PCL纤维的形态与热性能;研究了电纺过程中溶液浓度、电压、接收距离和纺丝速度对纤维形态的影响。结果表明:当纺丝电压为10 kV,接收距离为15 cm,纺丝速度为2 mL/min时,纺丝液中PCL质量分数为6%~12%能获得连续无串珠的纤维;纺丝电压为8~12 kV,电纺过程稳定;接收距离对纤维的直径和形貌无明显影响;与流延成型的PCL膜相比,电纺PCL纤维具有较低的结晶度。  相似文献   

8.
以N,N-二甲基乙酰胺为溶剂配制聚乳酸(PLA)溶液,采用静电纺制备PLA纳米纤维,探讨PLA溶液浓度、纺丝电压、接收距离对PLA纳米纤维形貌、直径及其分布的影响。结果表明:当PLA溶液浓度为10%、纺丝电压为24kV、接收距离为20cm时,纺丝效果好,纤维平均直径约91nm,且直径分布较均匀。  相似文献   

9.
以98%的甲酸为溶剂,不同质量分数的再生丝素溶液和3.5%的壳聚糖溶液以质量比70:30共混静电纺丝。用扫描电子显微镜(SEM)观察了丝素质量分数、电压和极距(喷丝口到收集装置的距离)对丝素/壳聚糖纳米纤维的形貌及直径的影响。正交试验结果表明:在丝素/壳聚糖溶液静电纺丝的工艺参数中,对纤维平均直径的影响因素由大到小依次为丝素质量分数、电压、极距。单因素试验表明:丝素/壳聚糖纳米纤维的平均直径及其分布范围随丝素质量分数的增加而增大;在15 ̄30kV范围内纤维的平均直径随电压增大而减小;当极距大于12cm时,对纤维直径影响不大。最佳工艺条件为:丝素质量分数13%,电压30kV,极距为12cm,制得的纳米纤维平均直径104nm。  相似文献   

10.
静电纺丝法纺制聚乳酸纳米纤维无纺毡   总被引:8,自引:0,他引:8  
采用静电纺丝法制备了生物降解聚乳酸(PLLA)纳米纤维无纺毡。分析了纺丝液浓度、电压、接收距离、挤出速度等因素对纤维形态的影响。结果表明:纺丝液的浓度和挤出速度对纤维直径的影响较为明显,溶液挤出速度增大,所得纤维微孔含量及尺寸也增大;适当的电压和接收距离有利于收集无液滴纤维;随着纤维直径的减小,无纺毡的孔径呈减小趋势。在PLLA质量分数为5.7%、挤出速度0.8 mL/h、接受距离 15.5 cm、电压8 kV的静电纺丝条件下,可制备纤维直径为200-400 nm的PLLA纳米纤维无纺毡。  相似文献   

11.
Poly(ether sulfone) (PES) nanofibers were prepared by the gas‐jet/electrospinning of its solutions in N,N‐dimethylformamide (DMF). The gas used in this gas‐jet/electrospinning process was nitrogen. The morphology of the PES nanofibers was investigated with scanning electron microscopy. The process parameters studied in this work included the concentration of the polymer solution, the applied voltage, the tip–collector distance (TCD), the inner diameter of the needle, and the gas flow rate. It was found from experimental results that the average diameter of the electrospun PES fibers depended strongly on these process parameters. A decrease in the polymer concentration in the spinning solutions resulted in the formation of nanofibers with a smaller diameter. The use of an 18 wt % polymer solution yielded PES nanofibers with an average diameter of about 80 nm. However, a morphology of mixed bead fibers was formed when the concentration of PES in DMF was below 20 wt % during gas‐jet/electrospinning. Uniform PES nanofibers with an average diameter of about 200 nm were prepared by this electrospinning with the following optimal process parameters: the concentration of PES in DMF was 25 wt %, the applied voltage was 28.8 kV, the gas flow was 10.0 L/min, the inner diameter of the needle was 0.24 mm, the TCD was 20 cm, and the flow rate was 6.0 mL/h. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

12.
Polycarbonate (PC) nanofibers are prepared using the air blowing‐assisted electrospinning process. The effects of air blowing pressure and PC solution concentration on the physical properties of fibers and the filtration performance of the nanofiber web are investigated. The air blowing‐assisted electrospinning process produces fewer beads and smaller nanofiber diameters compared with those obtained without air blowing. Uniform PC nanofibers with an average fiber diameter of about 0.170 μm are obtained using an applied voltage of 40 kV, an air blowing pressure of 0.3 MPa, a PC solution concentration of 16%, and a tip‐to‐collection‐screen distance (TCD) of 25 cm. The filtration efficiency improvement of the air blowing‐assisted electrospun web can be attributed to the narrow distribution of fiber diameter and small mean flow pore size of the electrospun web. Performance results show that the air blowing‐assisted electrospinning process can be applied to produce PC nanofiber mats with high‐quality filtration. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Polycarbonate urethane (PCU) nano-fibers were fabricated via electrospinning using N,N- dimethylformamide (DMF) and tetrahydrofuran (THF) as the mixed solvent. The effect of volume ratios of DMF and THF in the mixed solvent on the fiber structures was investigated. The results show that nano-fibers with a narrow diameter distribution and a few defects were obtained when mixed solvent with the appropriate volume ratio of DMF and THF as 1∶1. When the proportion of DMF was more than 75% in the mixed solvent, it was easy to form many beaded fibers. The applied voltage in the electrospinning process has a significant influence on the morphology of fibers. When the electric voltage was set between 22 and 32 kV, the average diameters of the fibers were found between 420 and 570 nm. Scanning electron microscopy (SEM) images showed that fiber diameter and structural morphology of the electrospun PCU membranes are a function of the polymer solution concentration. When the concentration of PCU solution was 6.0 wt-%, a beaded-fiber microstructure was obtained. With increasing the concentration of PCU solutions above 6.0 wt-%, beaded fiber decreased and finally disappeared. However, when the PCU concentration was over 14.0 wt-%, the average diameter of fibers became large, closed to 2 μm, because of the high solution viscosity. The average diameter of nanofibers increased linearly with increasing the volume flow rate of the PCU solution (10.0 wt-%) when the applied voltage was 24 kV. The results show that the morphology of PCU fibers could be controlled by electrospinning parameters, such as solution concentration, electric voltage and flow rate.  相似文献   

14.
采用静电纺丝法制备聚氨酯纤维非织造布,借助扫描电子显微镜分析了静电纺丝液的浓度、纺丝电压和纺丝液挤出速率等因素对纤维直径及形貌和结构的影响.结果表明,在纺丝液固体质量分数8%~12%、纺丝电压32.5~37.5 kV、纺丝液挤出速率0.8~2.4 mL/h范围内,能纺制出 直径分布在250~1000nm之间的聚氨酯纤维...  相似文献   

15.
In the present study, the morphology and mechanical properties of nylon‐6 nanofibers were investigated as a function of molecular weight (30,000, 50,000, and 63,000 g/mol) and electrospinning process conditions (solution concentration, voltage, tip‐to‐collector distance, and flow rate). Scanning electron micrographs (SEM) of nylon‐6 nanofibers showed that the diameter of the electrospun fiber increased with increasing molecular weight and solution concentration. An increase in molecular weight increases the density of chain entanglements (in solution) at the same polymer concentration; hence, the minimum concentration to produce nanofibers was lower for the highest molecular weight nylon‐6. The morphology of electrospun fibers also depended on tip‐to‐collector distance and applied voltage concentration of polymer solution as observed from the SEM images. Trends in fiber diameter and diameter distribution are discussed for each processing variable. Mechanical properties of electrospun nonwoven mats showed an increase in tensile strength and modulus as a function of increasing molecular weight. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
采用聚醚砜(PES)的良溶剂二甲基甲酰胺(DMF)和非良溶剂丙酮(AC)为共溶剂体系,研究了溶剂组成、纺丝成形条件对静电纺丝PES纤维的形貌及纤维直径的影响。结果表明:DMF/AC的配比对于静电纺丝PES纤维形貌具有直接的调控作用,随着DMF/AC混合溶剂中AC用量的增加,纤维平均直径变大,纤维毡中串珠数目明显减少,纤维均一性变好;随着纺丝液浓度的升高,纺丝电压的增大,纤维的平均直径变大;接收距离的变化对纤维平均直径影响不大;PES最佳纺丝工艺条件为纺丝溶液质量分数13%,纺丝电压15 kV,接收距离10 cm,mDMF/mAC为8.5/1.5,在此条件下,可以获得纤维平均直径为96 nm的PES纤维毡。  相似文献   

17.
通过高压静电场纺丝法制备了羟丙基甲基纤维素邻苯二甲酸酯(HPMCP)的超细纤维,并详细研究了溶液浓度、纺丝电压及混合溶剂的配比对纤维形态和直径的影响。当混合溶剂中的无水乙醇与二氯甲烷为1∶1(V/V)时,在纺丝电压为30kV的条件下,HPMCP可纺丝的浓度范围为7%~16%(wt)。溶液浓度为7%时,电纺得到珠状纤维;浓度大于8%时,得到表面光滑的圆柱状纤维。随着纺丝溶液浓度的增大,所得纤维的平均直径逐渐增大。在HPMCP溶液浓度(8%)和溶剂组成(无水乙醇/二氯甲烷=1∶1)保持一定时,随着纺丝电压的增大,所得纤维的平均直径呈下降的趋势。而在纺丝浓度和电压一定的情况下,随着混合溶剂中二氯甲烷体积分数的增大,所得纤维的平均直径先增大后减小,无水乙醇与二氯甲烷体积比为1∶1和1∶2时,所得纤维的直径分布相对集中。  相似文献   

18.
气流-静电纺丝法制备P(AN-co-AA)纳米纤维的研究   总被引:1,自引:1,他引:0  
用气流-静电纺丝法制备了丙烯腈-丙烯酸共聚物[P(AN-co-AA)]纳米纤维。通过扫描电镜(SEM)对纳米纤维形貌的表征,研究了聚合时丙烯酸(AA)单体的含量、溶剂种类以及工艺参数对P(AN-co-AA)纳米纤维直径和形貌的影响,得到了最佳工艺条件为:纺丝溶剂N、N-二甲基甲酰胺(DMF)、聚合单体中AA的摩尔分数比15%、P(AN-co-AA)质量分数10%、外加电压20kV、接收距离20cm,所得P(AN-co-AA)纳米纤维的平均直径为156nm。  相似文献   

19.
以聚乳酸(PLA)为原料,分别用三种不同的溶剂制得三种纺丝液并采用静电纺丝法,制备了聚乳酸纳米纤维。探讨了溶剂、电压、溶液质量分数对纤维形貌和直径的影响。结果表明,溶剂是决定PLA超细纤维形成的关键因素,三氯甲烷(CHC l3)与二甲基甲酰胺(DMF)混合溶剂(体积比为9∶1)是PLA静电纺丝较为理想的溶剂。在PLA质量分数为6%、极距15 cm、电压25 kV,流量2.5 mL/h的工艺条件下,可制备直径为1 200 nm左右的PLA纤维。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号