首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 1-V, 8-bit pipelined ADC is realized using multi-phase switched-opamp (SO) technique. A novel loading-free architecture is proposed to reduce the capacitive loading and to improve the speed in low-voltage SO circuits. Employing the proposed loading-free pipelined ADC architecture together with double-sampling technique and a fast-wake-up dual-input-dual-output switchable opamp, the ADC achieves 100-MS/s conversion rate, which to our knowledge is the fastest ADC ever reported at 1-V supply using SO technique, with performance comparable to that of many high-voltage switched-capacitor (SC) ADCs. Implemented in a 0.18-mum CMOS process, the ADC obtains a peak SNR of 45.2 dB, SNDR of 41.5 dB, and SFDR of 52.6 dB. Measured DNL and INL are 0.5 LSB and 1.1 LSB, respectively. The chip dissipates only 30 mW from a 1-V supply  相似文献   

2.
This paper presents a pipelined analog-to-digital converter (ADC) operating from a 0.5-V supply voltage. The ADC uses true low-voltage design techniques that do not require any on-chip supply or clock voltage boosting. The switch OFF leakage in the sampling circuit is suppressed using a cascaded sampling technique. A front-end signal-path sample-and-hold amplifier (SHA) is avoided by using a coarse auxiliary sample and hold (S/H) for the sub-ADC and by synchronizing the sub-ADC and pipeline-stage sampling circuit. A 0.5-V operational transconductance amplifier (OTA) is presented that provides inter-stage amplification with an 8-bit performance for the pipelined ADC operating at 10 Ms/s. The chip was fabricated on a standard 90 nm CMOS technology and measures 1.2 mm times 1.2 mm. The prototype chip has eight identical stages and stage scaling was not used. It consumes 2.4 mW for 10-Ms/s operation. Measured peak SNDR is 48.1 dB and peak SFDR is 57.2 dB for a full-scale sinusoidal input. Maximal integral nonlinearity and differential nonlinearity are 1.19 and 0.55 LSB, respectively.  相似文献   

3.
A successive approximation analog-to-digital converter (ADC) is presented operating at ultralow supply voltages. The circuit is realized in a 0.18-/spl mu/m standard CMOS technology. Neither low-V/sub T/ devices nor voltage boosting techniques are used. All voltage levels are between supply voltage V/sub DD/ and ground V/sub SS/. A passive sample-and-hold stage and a capacitor-based digital-to-analog converter are used to avoid application of operational amplifiers, since opamp operation requires higher values for the lowest possible supply voltage. The ADC has signal-to-noise-and-distortion ratios of 51.2 and 43.3 dB for supply voltages of 1 and 0.5 V, at sampling rates of 150 and 4.1 kS/s and power consumptions of 30 and 0.85 /spl mu/W, respectively. Proper operation is achieved down to a supply voltage of 0.4 V.  相似文献   

4.
A 9-bit 1.0-V pipelined analog-to-digital converter has been designed using the switched-opamp technique. The developed low-voltage circuit blocks are a multiplying analog-to-digital converter (MADC), an improved common-mode feedback circuit for a switched opamp, and a fully differential comparator. The input signal for the converter is brought in using a novel passive interface circuit. The prototype chip, implemented in a 0.5-μm CMOS technology, has differential nonlinearity and integral nonlinearity of 0.6 and 0.9 LSB, respectively, and achieves 50.0-dB SNDR at 5-MHz clock rate. As the supply voltage is raised to 1.5 V, the clock frequency can be increased to 14 MHz. The power consumption from a 1.0-V supply is 1.6 mW  相似文献   

5.
A 1.8-V 15-bit 40-MSample/s CMOS pipelined analog-to-digital converter with 90-dB spurious-free dynamic range (SFDR) and 72-dB peak signal-to-noise ratio (SNR) over the full Nyquist band is presented. Its differential and integral nonlinearities are 0.25 LSB and 1.5 LSB, respectively, and its power consumption is 400 mW. This performance is enabled by digital background calibration of internal digital-to-analog converter (DAC) noise and interstage gain errors. The calibration achieves improvements of better than 12 dB in signal-to-noise plus distortion ratio and 20 dB in SFDR relative to the case where calibration is disabled. Other enabling features of the prototype integrated circuit (IC) include a low-latency, segmented, dynamic element-matching DAC, distributed passive input signal sampling, and asymmetric clocking to maximize the time available for the first-stage residue amplifier to settle. The IC is realized in a 0.18-/spl mu/m mixed-signal CMOS process and has a die size of 4mm/spl times/5 mm.  相似文献   

6.
Based on a conventional successive approximation ADC architecture, a new and faster solution is presented. The input structure of the new solution consists of transmission gates and capacitors only and there is no need for any active element. A switching circuit is implemented to allow a wider input voltage range of the ADC. Together with a self-timed comparator, the power consumption is noticeably reduced while at the same time the sampling rate is doubled. Smaller input and reference capacitances reduce the requirements on the input and reference sources, respectively. Additionally, a widely clock-duty-cycle-independent control logic improves the applicability of the converter cell, especially for systems on chip. Results of measurements confirm the theoretical improvements  相似文献   

7.
A 6-bit 3.5-GS/s flash ADC is reported. A load circuit with a clamp diode and a replica-biasing scheme is developed for low-voltage and high-speed operation. An acceleration capacitor is introduced for high-speed overdrive recovery of a comparator. An averaging and interpolation network is employed in this ADC. The interpolation factor is optimized considering random offset, active area, and systematic offset to realize low offset and small active area. The ADC is fabricated in a 90-nm CMOS process and occupies 0.15 mm2. It consumes 98 mW with a 0.9-V power supply. With Nyquist input, SNDR and SFDR at 3.5 GS/s are 31.18 dB and 38.67 dB, respectively.  相似文献   

8.
We present an 8-bit 1.25-GS/s flash analog-to-digital converter (ADC) in 90-nm digital CMOS with wide analog input bandwidth and low power dissipation. The ADC employs two key techniques: a self-biased track-and-hold amplifier which enhances the ADC full-scale voltage and enables the converter operating under a single 1-V supply; and an improved calibration scheme based on reference pre-distortion to enhance the ADC linearity without sacrificing its sampling speed. The prototype converter thus achieves 7-, 6.9-, 6.5–bit ENOB at 1.25 GS/s for input signal frequencies of 10 MHz, 600 MHz, and 1.3 GHz, respectively, and better than 52-dB SFDR across the full Nyquist-band, while dissipating 207 mW from a single 1-V supply.   相似文献   

9.
10.
A 1-V 6-b 50-MSamples/s current-interpolating CMOS ADC   总被引:1,自引:0,他引:1  
CMOS analog-to-digital converters (ADC's) require either bootstrapping techniques or low-threshold devices to function at low supply voltages. A 6-b 50-MSamples/s ADC in normal-threshold CMOS operates with a single battery cell as low as 0.9 V without bootstrapping. A current-interpolation approach is taken to configure a 1-V ADC system that does not allow more than one VGS plus one VDSsat between the supply rails. The prototype takes a rail-to-rail input and works with a single system clock. The chip fabricated in 0.35-μm CMOS occupies an area of 2.4×2 mm2 and consumes 10 mW each in analog and digital supplies  相似文献   

11.
A 1-GHz signal bandwidth 6-bit CMOS ADC with power-efficient averaging   总被引:2,自引:0,他引:2  
A 2-GS/s 6-bit ADC with time-interleaving is demonstrated in 0.18-/spl mu/m one-poly six-metal CMOS. A triple-cross connection method is devised to improve the offset averaging efficiency. Circuit techniques, enabling a state-of-the-art figure-of-merit of 3.5 pJ per conversion step, are discussed. The peak DNL and INL are measured as 0.32 LSB and 0.5 LSB, respectively. The SNDR and SFDR have achieved 36 and 48dB, respectively, with 4 MHz input signal. Near Nyquist input frequencies, the SNDR and SFDR maintain above 30 and 35.5dB, respectively, up to 941 MHz. The complete ADC, including front-end track-and-hold amplifiers and clock buffers, consumes 310 mW from a 1.8-V supply while operating at 2-GHz conversion rate. The prototype ADC occupies an active chip area of 0.5 mm/sup 2/.  相似文献   

12.
A 10-bit 5-MS/s successive approximation ADC cell and a 70-MS/s parallel ADC array based on this cell, designed and fabricated in a 1.2-μm CMOS process, are presented. The ADC cell was designed to have an input bandwidth of more than 35 MHz and a sampling time of 14 nS at a clock rate of 70 MHz. The parallel ADC array consists of 14 such cells which are timed in one clock cycle skew successively in order to obtain digitized data every clock cycle. A two-step principle based on unsymmetrical dual-capacitor charge-redistribution-coupling has been used. With the help of a reset function, the comparator presents a fast response to the successive comparison. Each successive approximation ADC cell occupies an area of 0.6 mm2 and the core of the parallel ADC array occupies an area of 2.7×3.3 mm2. The power consumptions for the cell and the parallel ADC array are 18 mW and 267 mW respectively  相似文献   

13.
This paper describes a 10-bit 30-MS/s subsampling pipelined analog-to-digital converter (ADC) that is implemented in a 0.18 mum CMOS process. The ADC adopts a power efficient amplifier sharing architecture in which additional switches are introduced to reduce the crosstalk between the two opamp-sharing successive stages. A new configuration is used in the first stage of the ADC to avoid using a dedicated sample-and-hold amplifier (SHA) circuit at the input and to avoid the matching requirement between the first multiplying digital-to-analog converter (MDAC) and flash input signal paths. A symmetrical gate-bootstrapping switch is used as the bottom-sampling switch in the first stage to enhance the sampling linearity. The measured differential and integral nonlinearities of the prototype are less than 0.57 least significant bit (LSB) and 0.8 LSB, respectively, at full sampling rate. The ADC exhibits higher than 9.1 effective number of bits (ENOB) for input frequencies up to 30 MHz, which is the twofold Nyquist rate (fs/2), at 30 MS/s. The ADC consumes 21.6 mW from a 1.8-V power supply and occupies 0.7 mm2, which also includes the bandgap and buffer amplifiers. The figure-of-merit (FOM) of this ADC is 0.26 pJ/step.  相似文献   

14.
A 1-V integrated CMOS current-mode boost converter implemented in a standard 3.3/5-V 0.6-/spl mu/m CMOS technology (V/sub TH//spl ap/0.85 V), providing power-conversion efficiency of higher than 85% at 100-mA output current, is presented in this paper. The high-performance boost converter is successfully developed due to three proposed low-voltage circuit structures, including an inductor-current sensing circuit for current-mode operation with accuracy of higher than 94%, a precision V-I converter for compensation-ramp generation in current-mode control, and a VCO providing supply-independent clock and ramp signals. Moreover, a proposed startup circuit enables proper converter startup within a sub-1-V supply condition.  相似文献   

15.
1-V rail-to-rail operational amplifiers in standard CMOS technology   总被引:1,自引:0,他引:1  
The constraints on the design of CMOS operational amplifiers with rail-to-rail input range for extremely low supply voltage operation, are addressed. Two design approaches for amplifiers based on complementary input differential pairs and a single input pair, respectively, are presented. The first realizes a feedforward action to accommodate the common-mode (CM) component of the input signals to the amplifier input range. The second approach performs a negative feedback action over the input CM signal. Two operational amplifiers based on the proposed approaches have been designed for 1-V total supply operation, and fabricated in a standard 1.2-μm CMOS process. Experimental results are provided and the corresponding performances are discussed and compared  相似文献   

16.
《Electronics letters》2007,43(6):33-34
A new way of designing a 14-bit pipeline analogue-to-digital converter is described. Combined gain calibration and capacitor mismatch correction permit limiting power consumption and achieve a differential nonlinearity of 0.25LSB in a low-cost digital CMOS process (0.18 mum)  相似文献   

17.
An 8-bit successive approximation (SA) analog-to- digital converter (ADC) in 0.18 mum CMOS dedicated for energy-limited applications is presented. The SA ADC achieves a wide effective resolution bandwidth (ERBW) by applying only one bootstrapped switch, thereby preserving the desired low power characteristic. Measurement results show that at a supply voltage of 0.9 V and an output rate of 200 kS/s, the SA ADC performs a peak signal-to-noise-and-distortion ratio of 47.4 dB and an ERBW up to its Nyquist bandwidth (100 kHz). It consumes 2.47 muW in the test, corresponding to a figure of merit of 65 f J/conversion-step.  相似文献   

18.
A 12-bit video speed pipelined switched capacitor analog-to-digitalconverter (ADC) has been implemented in a 0.5 µmstandard CMOS process. It operates from a single 2.6–;3.3Vsupply, dissipates 23mA (independent of supply voltage) at 20MSPS and occupies only 1.1mm 2. A 61dB SINAD (fin = 4.5 MHz) and an effective resolution bandwidthof 9 MHz is achieved.  相似文献   

19.
A low voltage-power 13-bit 16 MSPS CMOS pipelined ADC   总被引:1,自引:0,他引:1  
A low voltage-power, 13-bit and 16 MSPS analog-to-digital converter (ADC) was implemented in 0.25-/spl mu/m one-poly five-metal standard CMOS process with MIM capacitors. This ADC used a constant-gm switch to improve the nonlinear effect and a telescopic operational transconductance amplifier with a wide-swing biasing technique for power saving and low supply voltage operation. The converter achieved a peak SNDR of 59.2 dB with 16.384 MSPS, a low supply voltage of 1.3V, and Nyquist input frequency of 8.75 MHz. The static INL of /spl plusmn/2.0 LSB and DNL of /spl plusmn/0.5 LSB were obtained. The total power consumption of this converter was 78 mW. This chip occupied 3.4 mm /spl times/ 3.6 mm area.  相似文献   

20.
A 1.5-V, 10-bit, 14.3-MS/s pipeline analog-to-digital converter was implemented in a 0.6 μm CMOS technology. Emphasis was placed on observing device reliability constraints at low voltage. MOS switches were implemented without low-threshold devices by using a bootstrapping technique that does not subject the devices to large terminal voltages. The converter achieved a peak signal-to-noise-and-distortion ratio of 58.5 dB, maximum differential nonlinearity of 11.5 least significant bit (LSB), maximum integral nonlinearity of 0.7 LSB, and a power consumption of 36 mW  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号