首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用离子束溅射技术,在玻璃衬底上制备了不同周期数的Si/Ge多层膜样品.利用X射线小角衍射、Raman散射光谱和室温光致发光(PL)对样品进行表征.结果表明,2.0~2.3eV之间的发光带是由薄膜中的各种缺陷形成的;1.77~1.84eV之间的发光带来自薄膜中的非晶结构和晶粒间的缺陷;1.53eV发光峰则可能源于纳米Ge晶粒发光.  相似文献   

2.
The morphology of buried interfaces plays a key role in high performing Mo/Si soft X-ray mirrors. We show that grazing-incidence small-angle X-ray scattering is a highly effective and non-destructive diagnostic technique for analysis of buried interfaces. The parameters of average interface autocorrelation function can be determined unambiguously. Additionally period thickness, roughness of interfaces and an effective number of vertically correlated periods can be extracted. The multilayer mirrors were prepared by e-beam evaporation on heated and unheated substrates, ion beam assisted e-beam evaporation, ion beam sputtering and RF magnetron sputtering. The latter three techniques produce multilayer mirrors with comparable interface roughness. The differences in lateral correlation length and Hurst parameter are found.  相似文献   

3.
《Thin solid films》2006,515(2):430-433
In this paper, we present an experimental study on the structural and crystalline properties of electron beam evaporated Mo/Si multilayers. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) experiments were used to characterize the crystalline nature of Mo and Si. TEM and XRD show that Si grows amorphous, while Mo clearly crystallizes. The Mo crystallites show no preferred growth orientations and a columnar growth mode, with crystallite sizes limited by the Mo layer thickness. From samples with low Mo content, we show that crystallization of Mo starts directly at the Mo/Si interfaces, with the formation of a Mo3Si compound. The crystallite lattice strains that develop during Mo-on-Si growth due to lattice mismatches, will add to the macroscopic multilayer stress. By comparing Mo lattice strains derived from XRD with changes in substrate curvatures, as determined by interferometry, we show that compressive and tensile substrate deformations are predominantly caused by the internal crystallite strains.  相似文献   

4.
We have observed a dramatic dependence of the extreme ultraviolet (EUV) reflectivity of Mo/Y multilayers on the oxygen content of yttrium. This is explained as being due to a change in the microstructure and an increase in roughness of the yttrium layers and not just to an increase in absorption owing to the amount of oxygen within the yttrium layers. We found that the best reflectivity of 38.4% was achieved with an oxygen content of 25%, which was reduced to 32.6% and 29.6% for multilayers manufactured from oxygen-free yttrium and 39%-oxygen yttrium, respectively. These results highlight the importance of including experimentally determined optical constants as well as interface roughness in multilayer calculations. In addition, the lifetime stability of Mo/Y multilayers with different capping layers was monitored for 1 year. The molybdenum- and palladium-capped samples exhibited low surface roughness and approximately 4% relative reflectivity loss in 1 year. The relative reflectivity loss of the yttrium-capped sample (yttrium with 39% oxygen) was approximately 8%. However, the reflectivity loss in all three capping layers occurred within the first 100 days after the deposition, and the reflectivity remained stable afterward.  相似文献   

5.
在室温下,分别利用常规磁控溅射和反应磁控溅射技术交替沉积Si薄膜和Si1-xNx薄膜在单晶硅基体上制备了Si/Si1-xNx纳米多层膜。接下来,在高温下对Si/Si1-xNx多层膜进行退火诱发各层中形成硅纳米晶。研究了Si1-xNx层厚度和N2流量沉积对Si/Si1-xNx多层膜中Si量子点形成的影响。TEM检测结果表明,N2流量为2.5mL/min时沉积的多层膜退火后形成了尺寸为20~30nm的等轴Si3N4纳米晶;N2流量为5.0mL/min时沉积的多层膜退火后在Si层和Si1-xNx多层中均形成了硅纳米晶,而在7.5mL/min N2流量下沉积的Si/Si1-xNx多层膜退火后仅在Si层中形成了硅纳米晶。  相似文献   

6.
采用离子束溅射技术,在玻璃衬底上制备了不同周期数的Si/Ge多层膜样品。通过Raman光谱和X射线小角衍射对薄膜进行了表征和分析,发现随着生长周期数的增加,层与层之间的互扩散效应逐渐减弱,界面结构逐渐清晰,生长周期为25的样品界面最平整。  相似文献   

7.
Yan-Zuo Tsai 《Thin solid films》2010,518(24):7523-7526
The CrAlSiN/W2N multilayer coatings were fabricated by DC magnetron sputtering. The bilayer periods of multilayer films were controlled in the range from 3 to 20 nm. The cross-sectional structure of multilayer and monolayer coatings was evaluated by transmission electron microscopy (TEM). The wear behavior of monolayer and multilayer coatings was investigated by a pin-on-disc tribometer. The nano-scratch tester was employed to study the crack propagation of scratched coatings. The images of wear scars were observed by optical microscopy (OM). The cross-sectional image of scratched films was analyzed by transmission electron microscopy (TEM). Owing to the nano-layered structure and higher hardness (or H/E ratio), the multilayer coatings exhibited better wear resistance than homogeneous films. The coefficient of friction of CrAlSiN/W2N multilayer coating with a bilayer period of 8 nm was around 0.6, and that of CrAlSiN homogeneous film was about 0.8. Different crack propagation mechanisms of CrAlSiN/W2N multilayer and CrAlSiN monolayer coatings were proposed and discussed.  相似文献   

8.
TiN/CNx multilayer films with bilayer periods of 4.5-40.3 nm were deposited by direct-current magnetron sputtering. Layer morphology and structure of the multilayered films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The TiN/CNx multilayers exhibited coherent epitaxial growth due to the mutual growth-promoting effect at small bilayer period and some crystalline regions going through the interface of TiN/CNx. Nanoindentation tests showed that the hardness of the multilayers varied from 12.5 to 31 GPa, with the highest hardness being obtained with a bilayer period of 4.5 nm. The tribological properties of the films were investigated using a ball-on-disk tribometer in humid air, and the TiN/CNx multilayer with a bilayer period of 4.5 nm also exhibited the lowest friction coefficient and the highest wear resistance.  相似文献   

9.
C/Si multilayer mirrors for the 25-30-nm wavelength region   总被引:2,自引:0,他引:2  
We report a new material combination, C/Si, for normal-incidence multilayer mirrors in the wavelength region 25-30 nm. The multilayers, fabricated by ion-beam-sputtering deposition, were characterized by near-normal-incidence reflectance measurements by using a discharge source and a grazing-incidence monochromator. The highest measured near-normal-incidence reflectance was R = 23% (25.6 nm), R = 20% (28.3 nm), R = 25% (30.4 nm) at incident angles of 10 degrees , 12 degrees , and 4 degrees , respectively. The multilayers were also characterized by transmission electron microscopy, which revealed sharp layer interfaces and low interfacial roughness.  相似文献   

10.
Mirkarimi PB  Bajt S  Wall MA 《Applied optics》2000,39(10):1617-1625
Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decrease more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar.  相似文献   

11.
用磁控溅射法制备了Mo/Si薄膜,用AFM和XRD分别研究了Mo原子的溅射能量不同时,Mo/Si薄膜表面形貌和晶相的变化.通过比较发现,随着Mo原子溅射能量的增大,Mo/Si薄膜表面粗糙度增加,Mo和Si的特征X射线衍射峰也越来越强,并且Mo膜层和Si膜层之间生成了MoSi2.Mo原子的溅射能量是诱导非晶Si结晶和MoSi2生成的主要原因.  相似文献   

12.
A new TiAlCN/VCN coating combining high hardness, low friction coefficient and chemical inertness has been developed for dry machining of “Sticky” (Al-, Ti- and Ni-based) alloys as well as advanced Metal-Matrix-Composite (MMC) materials used in aerospace and automotive industries. Excellent performance was achieved due to the synergy between V and C as main coating elements and the nanoscale multilayer structure of the coating. TiAlCN/VCN was deposited by the combined High-Power Impulse Magnetron Sputtering/Unbalanced Magnetron sputtering (HIPIMS/UBM) technology. Macroparticle free V+ ion flux generated by HIPIMS discharge was used to sputter clean the substrates prior to the coating deposition. A 0.4 μm thick TiAlN base layer followed by 3 μm thick TiAlCN/VCN nanoscale multilayer coating was deposited by unbalanced magnetron sputtering. The sputtering was carried out in a mixed CH4, N2 and Ar atmosphere. In dry milling of Al7010-T7651 alloy, TiAlCN/VCN nanoscale multilayer PVD coating outperformed state of the art Diamond Like Carbon (DLC, Cr/WC/a-CH) coating by factor of 4. In drilling Al-alloy enforced MMC materials, cemented carbide drills coated with TiAlCN/VCN produced 130 holes compared to 1-2 holes with uncoated drills.  相似文献   

13.
The development of multilayer mirror technology capable of operating in the range of 3-30 nm and the construction of thin membranes with excellent uniformity and strength have made it possible to design and implement a Mach-Zehnder interferometer operating at 15.5 nm. We have tested this interferometer by using a soft x-ray laser as a source, and we show its use in probing high-density plasmas.  相似文献   

14.
H. Liu  D. Hui  L. Hei  F. Lu 《Thin solid films》2009,517(21):5988-4927
Hard and transparent nanocomposite (Al, Si)N films are attractive for optical applications. In this paper, experimental results will be reported on nanocomposite (Al, Si)N films prepared by balanced magnetron sputtering. Microstructure and properties of the films were systematically characterized as a function of Si content of the films. It is shown that the (Al, Si)N films are transparent and exhibit no absorption in a wide range of wavelengths from ~ 0.3 to ~ 9 µm, i.e. from ultraviolet to mid-infrared region. Maximum hardness exceeding 25 GPa has been obtained when the Si content of the films is above 25 at.% and the microstructure of the films undergoes a transformation from nanocrystalline to amorphous states. It is demonstrated that the microstructure detail of the films is different, as compared with that of the films prepared by using unbalanced magnetron sputtering, and the reasons for this discrepancy is discussed.  相似文献   

15.
16.
The La(2)O(3)/Si thin films have been deposited by reactive DC magnetron sputtering. Amorphous state of La(2)O(3) layer has been shown by RHEED observation. Top surface chemistry of the a-La(2)O(3) has been evaluated with layer-by-layer depth profiling by ion bombardment and XPS measurements. It was found by core level spectroscopy that the top surface of the a-La(2)O(3) film consists of hydrocarbon admixture, lanthanum carbonate, and hydroxides that formed as a result of contact with air atmosphere. Thickness of this top surface modified layer is below 1 nm for a contact time of ~1.5 h with air at normal conditions.  相似文献   

17.
In this paper, we study the localized deposition of ZnO micro and nanostructures deposited by non-reactive rf-magnetron sputtering through a stencil mask on ultra-thin (10 nm) SiO2 layers containing a single plane of silicon nanocrystals (NCs), synthetized by ultra-low energy ion implantation followed by thermal annealing. The localized ZnO-deposited areas are reproducing the exact stencil mask patterns. A resistivity of around 5 × 10− 3 Ω cm is measured on ZnO layer. The as-deposited ZnO material is 97% transparent above the wavelength at 400 nm. ZnO nanostructures can thus be used as transparent electrodes for Si NCs embedded in the gate-oxide of MOS devices.  相似文献   

18.
Transparent a-IGZO (In-Ga-Zn-O) films have been actively studied for use in the fabrication of high-quality TFTs. In this study, a-IGZO films and a-IGZO/ITO double layers were deposited by DC magnetron sputtering under various oxygen flow rates. The a-IGZO films showed an amorphous structure up to 500 degrees C. The deposition rate of these films decreased with an increase in the amount of oxygen gas. The amount of indium atoms in the film was confirmed to be 11.4% higher than the target. The resistivity of double layer follows the rules for parallel DC circuits The maximum Hall mobility of the a-IGZO/ITO double layers was found to be 37.42 cm2/V x N s. The electrical properties of the double layers were strongly dependent on their thickness ratio. The IGZO/ITO double layer was subjected to compressive stress, while the ITO/IGZO double layer was subjected to tensile stress. The bending tolerance was found to depend on the a-IGZO thickness.  相似文献   

19.
The mirror-confinement-type electron cyclotron resonance (MCECR) plasma source has high plasma density and high electron temperature, and it is quite useful in many plasma processing, and has been used for etching and thin-film deposition. In this paper, the carbon films about 50 nm thickness were deposited on Si (1 0 0) by MCECR plasma sputtering the sintered carbon target with the argon plasma, and its properties were studied. The bonding structure of the film was analyzed by using the X-ray photoelectron spectropscopy (XPS) and the nanostructure was evaluated with the high-resolution transmission electron microscopy (HRTEM). The tribological properties (friction coefficient, wear rate, and wear life) of the film was investigated by using the pin-on-disk tribometer under the conditions that the normal load is 1 N and the sliding velocity is 0.05 m/s. The nanohardness of the films was measured by using the nanoindenter under conditions that the maximum displacement is 30 nm and the maximum load is 500 μN. The optical properties were measured by using the ellipsometer. The residual stress was measured with a surface profilometer. The surface morphology was studied by using the atomic force microscope (AFM).  相似文献   

20.
Interface engineering of short-period Ni/V multilayer X-ray mirrors   总被引:1,自引:0,他引:1  
Low-energy ion-assisted magnetron sputter deposition has been used for the synthesis of highly reflective Ni/V multilayer soft X-ray mirrors. A low ion energy and a high ion-to-metal flux ratio were employed in order to stimulate the adatom mobility while minimizing ion-induced intermixing at the interfaces. An analytic model, based on the binary collision approximation, was used in order to gain insight into low-energy ion–surface interactions as a function of ion energy and ion-to-metal flux ratio. The model predicted a favorable region in the ion energy-flux parameter space where only surface atomic displacements are stimulated during growth of Ni and V for multilayers. For a series of Ni/V multilayer mirrors with multilayer periods about Λ = 1.2 nm, grown with a continuous ion assistance using energies in the range 7–36 eV and with ion-to-metal flux ratios ΦNi = 4.7 and ΦV=20.9, specular and diffuse X-ray scattering analyses revealed that ion energies of 27–31 eV produced the best trade-off between reduced interfacial roughness and intermixing. However, it was also concluded that an interface mixing of about ± 1 atomic distance is unavoidable when a continuous flux of assisting ions is used.

To overcome this limitation, a sophisticated interface engineering technique was employed, where the first 0.3 nm of each layer was grown with a high-flux low-energy ion assistance and the remaining part was grown with a slightly higher ion energy. This method was demonstrated to largely eliminate the intermixing while maintaining the smoothening effect of ion assistance. Two Ni/V multilayer soft X-ray mirror structures, one with 500 periods designed for near-normal incidence and one 150 periods reflecting polarizer at the Brewster angle, were grown utilizing the interface engineering concept. Both the near-normal incidence reflectivity as well as polarizability were improved by a factor of 2 as compared to previously reported data for an X-ray energy of E = 511 eV.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号