首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent developments in technologies to correct aberrations in the eye have fostered extensive research in wave-front sensing of the eye, resulting in many reports of Zernike expansions of wave-front errors of the eye. For different reports of Zernike expansions, to be compared, the same pupil diameter is required. Since no standard pupil size has been established for reporting these results, a technique for converting Zernike expansion coefficients from one pupil size to another is needed. This investigation derives relationships between the Zernike expansion coefficients for two different pupil sizes.  相似文献   

2.
In eye aberrometry it is often necessary to transform the aberration coefficients in order to express them in a scaled, rotated, and/or displaced pupil. This is usually done by applying to the original coefficients vector a set of matrices accounting for each elementary transformation. We describe an equivalent algebraic approach that allows us to perform this conversion in a single step and in a straightforward way. This approach can be applied to any particular definition, normalization, and ordering of the Zernike polynomials, and can handle a wide range of pupil transformations, including, but not restricted to, anisotropic scalings. It may also be used to transform the aberration coefficients between different polynomial basis sets.  相似文献   

3.
A Shack-Hartmann aberrometer was used to measure the monochromatic aberration structure along the primary line of sight of 200 cyclopleged, normal, healthy eyes from 100 individuals. Sphero-cylindrical refractive errors were corrected with ophthalmic spectacle lenses based on the results of a subjective refraction performed immediately prior to experimentation. Zernike expansions of the experimental wave-front aberration functions were used to determine aberration coefficients for a series of pupil diameters. The residual Zernike coefficients for defocus were not zero but varied systematically with pupil diameter and with the Zernike coefficient for spherical aberration in a way that maximizes visual acuity. We infer from these results that subjective best focus occurs when the area of the central, aberration-free region of the pupil is maximized. We found that the population averages of Zernike coefficients were nearly zero for all of the higher-order modes except spherical aberration. This result indicates that a hypothetical average eye representing the central tendency of the population is nearly free of aberrations, suggesting the possible influence of an emmetropization process or evolutionary pressure. However, for any individual eye the aberration coefficients were rarely zero for any Zernike mode. To first approximation, wave-front error fell exponentially with Zernike order and increased linearly with pupil area. On average, the total wave-front variance produced by higher-order aberrations was less than the wave-front variance of residual defocus and astigmatism. For example, the average amount of higher-order aberrations present for a 7.5-mm pupil was equivalent to the wave-front error produced by less than 1/4 diopter (D) of defocus. The largest pupil for which an eye may be considered diffraction-limited was 1.22 mm on average. Correlation of aberrations from the left and right eyes indicated the presence of significant bilateral symmetry. No evidence was found of a universal anatomical feature responsible for third-order optical aberrations. Using the Marechal criterion, we conclude that correction of the 12 largest principal components, or 14 largest Zernike modes, would be required to achieve diffraction-limited performance on average for a 6-mm pupil. Different methods of computing population averages provided upper and lower limits to the mean optical transfer function and mean point-spread function for our population of eyes.  相似文献   

4.
Zernike polynomials and their associated coefficients are commonly used to quantify the wavefront aberrations of the eye. When the aberrations of different eyes, pupil sizes, or corrections are compared or averaged, it is important that the Zernike coefficients have been calculated for the correct size, position, orientation, and shape of the pupil. We present the first complete theory to transform Zernike coefficients analytically with regard to concentric scaling, translation of pupil center, and rotation. The transformations are described both for circular and elliptical pupils. The algorithm has been implemented in MATLAB, for which the code is given in an appendix.  相似文献   

5.
Orthonormal polynomials in wavefront analysis: analytical solution   总被引:1,自引:0,他引:1  
Zernike circle polynomials are in widespread use for wavefront analysis because of their orthogonality over a circular pupil and their representation of balanced classical aberrations. In recent papers, we derived closed-form polynomials that are orthonormal over a hexagonal pupil, such as the hexagonal segments of a large mirror. We extend our work to elliptical, rectangular, and square pupils. Using the circle polynomials as the basis functions for their orthogonalization over such pupils, we derive closed-form polynomials that are orthonormal over them. These polynomials are unique in that they are not only orthogonal across such pupils, but also represent balanced classical aberrations, just as the Zernike circle polynomials are unique in these respects for circular pupils. The polynomials are given in terms of the circle polynomials as well as in polar and Cartesian coordinates. Relationships between the orthonormal coefficients and the corresponding Zernike coefficients for a given pupil are also obtained. The orthonormal polynomials for a one-dimensional slit pupil are obtained as a limiting case of a rectangular pupil.  相似文献   

6.
Orthonormal polynomials in wavefront analysis: error analysis   总被引:2,自引:0,他引:2  
Dai GM  Mahajan VN 《Applied optics》2008,47(19):3433-3445
Zernike circle polynomials are in widespread use for wavefront analysis because of their orthogonality over a circular pupil and their representation of balanced classical aberrations. However, they are not appropriate for noncircular pupils, such as annular, hexagonal, elliptical, rectangular, and square pupils, due to their lack of orthogonality over such pupils. We emphasize the use of orthonormal polynomials for such pupils, but we show how to obtain the Zernike coefficients correctly. We illustrate that the wavefront fitting with a set of orthonormal polynomials is identical to the fitting with a corresponding set of Zernike polynomials. This is a consequence of the fact that each orthonormal polynomial is a linear combination of the Zernike polynomials. However, since the Zernike polynomials do not represent balanced aberrations for a noncircular pupil, the Zernike coefficients lack the physical significance that the orthonormal coefficients provide. We also analyze the error that arises if Zernike polynomials are used for noncircular pupils by treating them as circular pupils and illustrate it with numerical examples.  相似文献   

7.
We consider optical systems with variable numerical aperture (NA) on the level of the Zernike coefficients of the correspondingly scalable pupil function. We thus present formulas for the Zernike coefficients and their first two derivatives as a function of the scaling factor ε ≤ 1, and we apply this to the Strehl ratio and its derivatives of NA-reduced optical systems. The formulas for the Zernike coefficients of NA-reduced optical systems are also useful for the forward calculation of point-spread functions and aberration retrieval within the Extended Nijboer–Zernike (ENZ) formalism for optical systems with reduced NA or systems that have a central obstruction. Thus, we retrieve a Gaussian, comatic pupil function on an annular set from the intensity point-spread function in the focal region under high-NA conditions.  相似文献   

8.
廖志远  邢廷文  刘志祥 《光电工程》2011,38(11):146-150
泽尼克圆多项式在圆形光瞳的正交性和能够代表经典像差而被广泛应用到波前分析中,用泽尼克圆多项式作为矩形光瞳基底函数,通过推导得到在矩形光瞳上正交的多项式.这个在矩形光瞳上正交的多项式不仅是唯一的,而且也能够表示经典像差,就像泽尼克圆多项式在表示圆形光瞳时具有这样的特性一样.矩形光瞳上正交多项式像泽尼克圆多项式一样即可以用...  相似文献   

9.
Zernike annular polynomials and atmospheric turbulence   总被引:1,自引:0,他引:1  
Imaging through atmospheric turbulence by systems with annular pupils is discussed using the Zernike annular polynomials. Fourier transforms of these polynomials are derived analytically to facilitate the calculation of variance and covariance of the aberration coefficients. Zernike annular shape functions are derived and used to calculate the Strehl ratio and the residual phase structure and mutual coherence functions when a certain number of modes are corrected using, say, a deformable mirror. Special cases of long- and short-exposure images are also considered. The results for systems with a circular pupil are obtained as a special case of the annular pupil.  相似文献   

10.
The root-mean-square (rms) of the residual wavefront, after propagation through atmospheric turbulence and corrected from Zernike polynomials, has been derived for the von Kármán turbulence model. The rms for any location in the telescope pupil and the pupil average rms have been calculated. It is shown that the residual rms on the edge of the pupil can be up to 35% larger than the pupil average residual rms. The results are useful to estimate the required rms stroke of deformable mirror (DM) actuators when they are used as a second stage of correction either in a tip-tilt, single-DM configuration or in a tip-tilt, two-DM (woofer-tweeter) setup.  相似文献   

11.
Mahajan VN 《Applied optics》1995,34(34):8060-8062
The use of Zernike polynomials to calculate the standard deviation of a primary aberration across a circular, annular, or a Gaussian pupil is described. The standard deviation of secondary aberrations is also discussed briefly.  相似文献   

12.
Baba N  Mutoh K 《Applied optics》2001,40(4):544-552
We conduct computer simulations of the reconstruction of a wave front at a telescope pupil with the phase-diversity method. An instantaneous wave front is reconstructed from focused and defocused specklegrams of a point star. In the wave-front reconstruction we do not fit the wave front to Zernike polynomials but retrieve the phase with a phase-unwrapping procedure. Averaging over many atmospherically perturbed wave fronts leads to the residual phase error, namely, the aberration of the telescope. The scintillation effect, nonuniformity of amplitude on a telescope pupil, is also discussed.  相似文献   

13.
A Zernike expansion over a circle is given for an arbitrary function of a single linear spatial coordinate. The example of a half-plane mask (Hilbert filter) is considered. The expansion can also be applied to cylindrical aberrations over a circular pupil. A product of two such series can thus be used to expand an arbitrary separable function of two Cartesian coordinates.  相似文献   

14.
15.
Hartmann-Shack technique and refraction across the horizontal visual field   总被引:1,自引:0,他引:1  
We compared refractions across the horizontal visual field, based on different analyses of wave aberration obtained with a Hartmann-Shack instrument. The wave aberrations had been determined for 6-mm-diameter pupils up to at least the sixth Zernike order in five normal subjects [J. Opt. Soc. Am. A 19, 2180 (2002)]. The polynomials were converted into refractions based on 6-mm pupils and second-order Zernike aberrations (6 mm/2nd order), 3-mm pupils and second-order aberrations (3 mm/2nd order), 1-mm pupils and second-order aberrations (1 mm/2nd order), and 6-mm pupils with both second- and fourth-order aberrations (6 mm/4th order). The 3-mm/2nd-order and 6-mm/2nd-order refractions differed by as much as 0.9 D in mean sphere on axis, but the differences reduced markedly toward the edges of the visual field. The cylindrical differences between these two analyses were small at the center of the visual field (<0.3 D) but increased into the periphery to be greater than 1.0 D for some subjects. Much smaller differences in mean sphere and cylinder were found when 3-mm/2nd-order refractions and either the 1-mm/2nd-order refractions or the 6-mm/4th-order refractions were compared. The results suggest that, for determining refractions based on wave aberration data with large pupils, similar results occur by either restricting the analysis to second-order Zernike aberrations with a smaller pupil such as 3 mm or using both second- and fourth-order Zernike aberrations. Since subjective refraction is largely independent of the pupil size under photopic conditions, objective refractions based on either of these analyses may be the most useful.  相似文献   

16.
A matrix method is developed that allows a new set of Zernike coefficients that describe a surface or wave front appropriate for a new aperture size to be found from an original set of Zernike coefficients that describe the same surface or wave front but use a different aperture size. The new set of coefficients, arranged as elements of a vector, is formed by multiplying the original set of coefficients, also arranged as elements of a vector, by a conversion matrix formed from powers of the ratio of the new to the original aperture and elements of a matrix that forms the weighting coefficients of the radial Zernike polynomial functions. In developing the method, a new matrix method for expressing Zernike polynomial functions is introduced and used. An algorithm is given for creating the conversion matrix along with computer code to implement the algorithm.  相似文献   

17.
We report root-mean-square (RMS) wavefront error (WFE) for individual aberrations and cumulative high-order (HO) RMS WFE for the normal human eye as a function of age by decade and pupil diameter in 1 mm steps from 3 to 7 mm and determine the relationship among HO RMS WFE, mean age for each decade of life, and luminance for physiologic pupil diameters. Subjects included 146 healthy individuals from 20 to 80 years of age. Ocular aberration was measured on the preferred eye of each subject (for a total of 146 eyes through dilated pupils; computed for 3, 4, 5, 6, and 7 mm pupils; and described with a tenth-radial-order normalized Zernike expansion. We found that HO RMS WFE increases faster with increasing pupil diameter for any given age and pupil diameter than it does with increasing age alone. A planar function accounts for 99% of the variance in the 3-D space defined by mean log HO RMS WFE, mean age for each decade of life, and pupil diameter. When physiologic pupil diameters are used to estimate HO RMS WFE as a function of luminance and age, at low luminance (9 cd/m2) HO RMS WFE decreases with increasing age. This normative data set details (1) the 3-D relationship between HO RMS WFE and age for fixed pupil diameters and (2) the 3-D relationship among HO RMS WFE, age, and luminance for physiologic pupil diameters.  相似文献   

18.
高级像差对人眼成像质量和视觉的影响   总被引:3,自引:0,他引:3  
定量地研究高级像差对人眼成像质量和视觉的影响对人眼像差矫正具有重要的实验和临床意义.利用Hartmann-Shack波前传感器人眼像差仪测量了正常人眼6mm瞳孔的波前像差,由波前像差计算出人眼光学系统的光学调制传递函数MTF和Strehl比率,并由MTF和视网膜空间像调制度AIM曲线计算出人眼视锐度和对比敏感度函数CSF.根据MTF和Strehl比率分析了高级像差对人眼成像质量的影响,根据视锐度和对比敏感度函数CSF分析了高级波像差对视觉的影响.研究表明Zernik前6级像差对人眼成像质量和视觉的影响是不可忽略的,更高级的像差对人眼成像质量和视觉的影响较小,甚至可以忽略.对Zemik前6级像差进行矫正,可以得到相当好的视觉.  相似文献   

19.
The general polarization behavior of almost-plane waves, in which the electric field varies slowly over a circular pupil, is considered, on the basis of an axial Hertz potential treatment and expansion in Zernike polynomials. The resultant modes of a circular aperture are compared with the well-known waveguide (or optical fiber) modes and Gaussian beam modes. The wave can be decomposed into partial waves of electric and magnetic types. The modes for a square pupil are also considered. The particular application of the effect on polarization of focusing the waves is discussed. Another application discussed is the Fresnel reflection from a dielectric interface, it being shown that the Fresnel reflection alters the relative strength of the electric and magnetic components.  相似文献   

20.
Winocur J 《Applied optics》1983,22(23):3711-3715
A method for decomposition of phase difference error between measurements of atmospheric turbulence-induced phase distortion at two different wavelengths is described. Calculations are made of the phase difference errors in the first five Zernike radial modes for both ground-to-ground and ground-to-space transmission of laser radiation. It is found that the phase difference error compared with the uncorrected wavefront phase error is relatively insignificant in the first (tilt) Zernike mode but increases in significance with the order of the Zernike mode. Relative phase difference error is also found to depend on transmitted and received wavelengths, aperture diameter, propagation path, and strength of turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号