首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modulatory effects of electrical and chemical (glutamate) stimulation in the rostral ventromedial medulla (RVM) on spinal nociceptive transmission and a spinal nociceptive reflex were studied in rats. Electrical stimulation at a total 86 sites in the RVM in the medial raphe nuclei (n = 54) and adjacent gigantocellular areas (n = 32) produced biphasic (facilitatory and inhibitory, n = 43) or only inhibitory (n = 43) modulation of the tail-flick (TF) reflex. At these 43 biphasic sites in the RVM, facilitation of the TF reflex was produced at low intensities of stimulation (5-25 microA) and inhibition was produced at greater intensities of stimulation (50-200 microA). At 43 sites in the RVM, electrical stimulation only produced intensity-dependent inhibition of the TF reflex. Activation of cell bodies in the RVM by glutamate microinjection reproduced the biphasic modulatory effects of electrical stimulation. At biphasic sites previously characterized by electrical stimulation, glutamate at a low concentration (5 nmol) produced facilitation of the TF reflex; a greater concentration (50 nmol) only inhibited the TF reflex. In electrophysiological experiments, electrical stimulation at 62 sites in the RVM produced biphasic (n = 26), only inhibitory (n = 26), or only facilitatory (n = 10) modulation of responses of lumbar spinal dorsal horn neurons to noxious cutaneous thermal (50 degrees C) or mechanical (75.9 g) stimulation. Facilitatory effects were produced at lesser intensities of stimulation and inhibitory effects were produced at greater intensities of stimulation. The apparent latencies to stimulation-produced facilitation and inhibition, determined with the use of a cumulative sum method and bin-by-bin analysis of spinal neuron responses to noxious thermal stimulation of the skin, were 231 and 90 ms, respectively. The spinal pathways conveying descending facilitatory and inhibitory influences were found to be different. Descending facilitatory influences on the TF reflex were conveyed in ventral/ventrolateral funiculi, whereas inhibitory influences were conveyed in dorsolateral funiculi. The results indicate that descending inhibitory and facilitatory influences can be simultaneously engaged throughout the RVM, including nucleus raphe magnus, and that such influences are conveyed in different spinal funiculi.  相似文献   

2.
The effect of systemic morphine on 3 behaviors in the same group of chronic spinal rats was examined: the tail-flick (TF) reflex to a noxious thermal stimulus, limb withdrawal (LW) to mechanoreceptor (von Frey hair) stimulation, and hind limb flexion (flexor reflex [FR]) elicited by innocuous electrical stimulation of the toes. Compared with intact rats, the potency of morphine on both the TF and the hind paw (but not the forepaw) LW response was significantly reduced. Morphine's effect on the FR depended on the dose. The lowest dose (1.0 mg/kg) produced no change, 4.0 mg/kg decreased response magnitude by approximately 50% (indicating an antispastic effect), and 8.0 mg/kg increased flexor magnitude by 100%. The concurrent TF and FR assays revealed a dissociation of morphine's effects in that the highest dose (8.0 mg/kg) significantly inhibited the nociceptive TF response but facilitated the FR in the same chronic spinal rats. This outcome may be relevant to the phenomenon of "opioid-related myoclonus" recently described in cancer patients, which "was highly associated with nerve dysfunction due to spinal cord lesions" (S. Mercadante, 1998, p. 6). (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
4.
In previous studies, we have shown that electrically or chemically evoked activation of the ventrolateral orbital cortex (VLO) depresses the rat tail-flick (TF) reflex, and this antinociceptive effect is mediated by the periaqueductal gray (PAG). The aim of the present study was to examine whether electrical stimulation of the VLO could inhibit the rat jaw-opening reflex (JOR), and to determine whether electrolytic lesions of the PAG could attenuate this VLO-evoked inhibition. Unilateral electrical stimulation of the VLO significantly depressed the JOR elicited by tooth pulp or facial skin stimuli, with a mean threshold of 30.5+/-2.3 microA (n=22). Increasing stimulation intensities from 30 to 80 microA resulted in greater reduction of the dEMG amplitude from 22.9+/-5.0% to 69.7+/-3.7% of the baseline value (P<0.01, n=22). The inhibitory effect appeared 50 ms after the beginning of VLO stimulation and lasted about 150 ms, as determined by varying the conditioning-test (C-T) time interval. Unilateral lateral or ventrolateral lesions of the PAG produced only a small attenuation of the VLO-evoked inhibition of the JOR, but bilateral lesions eliminated this inhibition. These findings suggest that the VLO plays an important role in modulation of orofacial nociceptive inputs, and provide further support for the hypothesis that the antinociceptive effect of VLO is mediated by PAG leading to activation of a brainstem descending inhibitory system and depression of nociceptive inputs at the trigeminal level. The role played by VLO in pain modulation is discussed in association with the proposed endogenous analgesic system consisting of medullary cord-Sm-VLO-PAG-medullary cord.  相似文献   

5.
Long-lasting facilitations of spinal nociceptive reflexes resulting from temporal summation of nociceptive inputs have been described on many occasions in spinal, nonanesthetized rats. Because noxious inputs also trigger powerful descending inhibitory controls, we investigated this phenomenon in intact, halothane-anesthetized rats and compared our results with those obtained in other preparations. The effects of temporal summation of nociceptive inputs were found to be very much dependent on the type of preparation. Electromyographic responses elicited by single square-wave electrical shocks (2 ms, 0.16 Hz) applied within the territory of the sural nerve were recorded in the rat from the ipsilateral biceps femoris. The excitability of the C-fiber reflex recorded at 1.5 times the threshold (T) was tested after 20 s of electrical conditioning stimuli (2 ms, 1 Hz) within the sural nerve territory. During the conditioning procedure, the C-fiber reflex was facilitated (wind-up) in a stimulus-dependent fashion in intact, anesthetized animals during the application of the first seven conditioning stimuli; thereafter, the magnitude of the responses reached a plateau and then decreased. Such a wind-up phenomenon was seen only when the frequency of stimulation was 0.5 Hz or higher. In spinal, unanesthetized rats, the wind-up phenomenon occurred as a monotonic accelerating function that was obvious during the whole conditioning period. An intermediate picture was observed in the nonanesthetized rat whose brain was transected at the level of the obex, but the effects of conditioning were profoundly attenuated when such a preparation was anesthetized. In intact, anesthetized animals the reflex was inhibited in a stimulus-dependent manner during the postconditioning period. These effects were not dependent on the frequency of the conditioning stimulus. Such inhibitions were blocked completely by transection at the level of the obex, and in nonanesthetized rats were then replaced by a facilitation. A similar long-lasting facilitation was seen in nonanesthetized, spinal rats. It is concluded that, in intact rats, an inhibitory mechanism counteracts the long-lasting increase of excitability of the flexor reflex seen in spinal animals after high-intensity, repetitive stimulation of C-fibers. It is suggested that supraspinally mediated inhibitions also participate in long term changes in spinal cord excitability after noxious stimulation.  相似文献   

6.
Examined the effect of a spinal transection (ST) on morphine (MOR)-induced tolerance in rats with the tail withdrawal reflex (tail flick; TF), elicited by noxious thermal stimulation. Intact Ss became tolerant to sc MOR injections if they were tested on the TF after each injection. MOR administration alone did not produce tolerance; TF tests alone did, although not always to a significant extent. However, when MOR only, TF tests only, or both were administered prior to ST (acute spinal Ss), all groups were tolerant when tested 1 day after spinalization. When the same treatments were administered to Ss 3 wks after ST (chronic spinal Ss), neither MOR nor TF tests alone produced tolerance. Chronic spinal Ss became tolerant only if they were tested after each injection. Results suggest that tolerance develops at the spinal cord as a result of either chronic opiate exposure or performance of the nociceptive response, but in intact Ss, tolerance is inhibited or suppressed by a supraspinal action of MOR. Results also suggest that such tolerance is mediated by descending input or that ST produced intrinsic changes in the spinal cord that preclude the development of tolerance induced only by opiate or behavioral stimulation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
To study the density of nicotinic acetylcholine receptors on primary afferents and central nociceptive pathways, [3H](-)-nicotine binding was conducted in the cerebral cortex and spinal cord including dorsal roots and ganglia (DRG), of control rats and rats desensitized by neonatal capsaicin treatment. [3H](-)-nicotine binding in capsaicin-treated rats was reduced in cerebral cortex by 35% and spinal cord+DRG by 46% (p < 0.05). Functionally, both iontophoretically applied acetylcholine- and capsaicin-evoked flares (measured by laser Doppler flowmetry) were reduced in capsaicin-treated animals (p < 0.05); similarly, electrical stimulation-evoked flares were significantly lower in the same group, compared with controls (p < 0.05). These data provide direct evidence that many neuronal nicotinic acetylcholine receptors are associated with capsaicin-sensitive peptidergic neurones, including primary afferents, DRG and central nociceptive pathways.  相似文献   

8.
In vivo electrophysiological assays in anesthetized rats have been used to compare the effects of the 5HT1B/1D receptor agonist, naratriptan, on central trigeminal nociceptive processing from dural and cutaneous inputs with its effects on nociceptive processing in the spinal cord. Naratriptan inhibited responses of single trigeminal neurons, to noxious electrical and mechanical stimulation of the dura and face, dose dependently by a maximum of 67+/-3% and 70+/-18%, respectively, at 3 mg kg(-1) i.v. In contrast, naratriptan did not affect spinal dorsal horn neuronal responses to noxious mechanical stimulation of the hind-paw. These findings suggest that 5HT1B/1D receptors have differential effects on nociceptive processing in the trigeminal versus spinal dorsal horns and provide a potential explanation for the lack of general analgesic effects of brain penetrant 5HT(1B/1D) agonist antimigraine drugs.  相似文献   

9.
It is documented that spinal nociceptive transmission receives descending facilitatory and inhibitory modulation from supraspinal structures. The rostral ventral medulla (RVM), including the nucleus raphe magnus (NRM), nuclei reticularis gigantocellularis (NGC) and gigantocellularis pars alpha (NGCalpha), is the major bulbar relay of descending modulatory influences. Pharmacological studies show that facilitation of a spinal nociceptive tail-flick (TF) reflex induced by stimulation in the NGC and NGCalpha is mediated by spinal serotonergic receptors. The present series of experiments provide evidence that activation of spinal serotonergic systems are critical for both induction and maintenance of secondary hyperalgesia induced by subcutaneous injection of formalin into one hindpaw. Subcutaneous injection of formalin produced facilitation of tail withdrawal (mechanical) and the TF reflex (thermal). Facilitatory effects persisted for at least 30 min. Peripheral blockade of the activity by local injection of a hydrophilic lidocaine derivative (QX-314, 5%) into the injected hindpaw abolished both mechanical and thermal facilitation, indicating that peripheral input is important to maintain long-lasting facilitation. Intrathecal application of a serotonergic receptor antagonist methysergide at a dose (64 nmol) which completely blocked descending facilitation produced by electrical- or chemical-stimulation in the NGC and NGCalpha also significantly attenuated or completely abolished facilitation of tail withdrawal and the TF reflex induced by formalin. Methysergide was effective whether the injection was performed before or after the formalin injection. These results suggest that activation of descending facilitatory serotonergic influences by a prolonged noxious stimulation could contribute to secondary hyperalgesia observed at the tail.  相似文献   

10.
Ketoprofen is a non-steroidal antiinflammatory drug (NSAID) which provides effective analgesia in situations of pain provoked by tissue inflammation. However, the location of its analgesic effects, (peripheral tissues versus central nervous system), have not been clearly identified and separated. In the present study the effectiveness of ketoprofen was examined in two different types of experiments: (i) Open field behavioural tests in conscious rats, and (ii) spinal cord nociceptive reflexes (single motor units) activated by electrical and thermal stimulation in chloralose anaesthetised rats. The experiments were performed in rats with carrageenan-induced inflammation of one hindpaw, or of one knee joint. The administration of ketoprofen significantly inhibited the reduction of exploratory movements caused by inflammation in open field experiments. Ketoprofen was also effective in depressing reflex activity evoked by electrical and noxious thermal stimulation of the skin, either in inflamed tissue or in normal tissue of monoarthritic animals. It was also effective in the reduction of reflex wind-up; a phenomenon in which the activity of spinal cord neurones increases progressively with high frequency electrical stimulation. We therefore conclude that ketoprofen has central as well as peripheral analgesic activity.  相似文献   

11.
The purpose of this study was to show that the occurrence of skin ulcers observed in animals neonatally treated with the neurotoxin capsaicin coincide with trophic disturbances. In addition, cutaneous lesions increased when self-grooming and scratching behaviors reached maturity. The temporal course of cephalic cutaneous wounds in neonatally capsaicin-treated rats was evaluated in animals wearing and not wearing plastic collars from postnatal day (P) 21 until P45. The collars were used to prevent self-grooming and scratching. Beginning on P21, capsaicin-treated rats under both conditions showed transient skin ulcers distributed throughout the head and neck regions. In the capsaicin-treated group without collars, lesions reached their greatest severity by P40, when self-grooming and scratching behaviors obtained adult characteristics. Furthermore, no lesions were detected after 25 days. In the capsaicin-treated rats that wore plastic collars, the widest distribution of skin lesions occurred on P55, after which time lesions vanished detection by 25 days. In this latter group, the cutaneous lesions were exacerbated when collars were removed. Data suggest that transient cutaneous wounds associated with neonatal capsaicin administration may be mediated via capsaicin-sensitive sensory neurons that are involved in trophic and regenerating neural mechanisms.  相似文献   

12.
In the rat, applying noxious heat stimuli to the excitatory receptive fields and simultaneously to adjacent, much larger, areas of the body results in a surface-related reduction in the responses of lumbar dorsal horn convergent neurons. These inhibitory effects induced by spatial summation of nociceptive inputs have been shown to involve a supraspinally mediated negative feedback loop. The aim of the present study was to determine the anatomic level of integration of these controls and hence to ascertain what relationships they might share with other descending controls modulating the transmission of nociceptive signals. The responses of lumbar convergent neurons to noxious stimulation (15-s immersion in a 48 degrees C water bath) applied to increasing areas of the ipsilateral hindlimb were examined in several anesthetized preparations: sham-operated rats, rats with acute transections performed at various levels of the brain stem, and spinal rats. The effects of heterotopic noxious heat stimulation (tail immersion in a 52 degrees C water bath) on the C-fiber responses of these neurons also were analyzed. The electrophysiological properties of dorsal horn convergent neurons, including their responses to increasing stimulus surface areas, were not different in sham-operated animals and in animals the brain stems of which had been transected completely rostral to a plane -2. 8 mm remote from interaural line (200 micron caudal to the caudal end of the rostral ventromedial medulla). In these animals, increasing the stimulated area size from 4.8 to 18 cm2 resulted in a 35-45% reduction in the responses. In contrast, relative to responses elicited by 4.8 cm2 stimuli, responses to 18 cm2 were unchanged or even increased in animals with transections at more caudal level and in spinal animals. Inhibitions of the C-fiber responses elicited by heterotopic noxious heat stimulation were in the 70-80% range during conditioning in sham-operated animals and in animals with rostral brain stem transections. Such effects were reduced significantly (residual inhibitions in the 10-20% range) in animals with transections >500 micron caudal to the caudal end of the rostral ventromedial medulla and in spinal animals. It is concluded that the caudal medulla constitutes a key region for the expression of negative feed-back mechanisms triggered by both spatial summation of noxious inputs and heterotopic noxious inputs.  相似文献   

13.
Experiments were performed on male rats. The responses of dorsal horn convergent neurons in spinal cord (T12-L1) to noxious stimulation of hind paw were recorded extracellularly with glass microelectrode. When low intensity (2 V) electroacupuncture (EA) was used, the nociceptive responses of convergent neurons were inhibited by EA at "Zusanli" near noxious stimulation area, but not at "Xiaguan" far from the area. When intensity (18 V) high than the threshold of C fibers EA was applied at the far acupoint "Xiaguan", obvious analgesic effects on convergent neurons were also produced, showing an extensive analgesic effect of strong EA at acupoint. This extensive analgesic effect was abdicated by lesion of nucleus raphe magnus (NRM), but still persisted to some extent by EA at the same segment acupoint "Zusanli" with 18 V or 2 V intensity. The results suggest that, the extensive analgesia of strong EA at far segment acupoint may be mainly mediated by noxious stimulation through NRM, a negative feedback mechanism modulating pain of supraspinal cord. The analgesia due to 2 V EA at the same segment acupoint may be mainly produced by gate control in spinal cord, but also to some extend by supraspinal cord mechanism.  相似文献   

14.
'Diffuse noxious inhibitory controls' or DNIC is the inhibition of multireceptive neurons in the dorsal horn of the spinal cord that results when a noxious stimulus is applied to a region of the body remote from the neuron's excitatory receptive field. Although this phenomenon is well-documented, the behavioral consequences of DNIC are not clear. The present study was undertaken to determine how nocifensor withdrawal reflexes evoked by a noxious stimulus are altered by application of a second noxious stimulus to a distant part of the body. The tail flick or hindpaw withdrawal reflex of lightly anesthetized (0.6-1.0% halothane) rats was measured before, during and after another appendage was placed in water ranging in temperature from 45 to 54 degrees C. When the forepaw or hindpaw was placed in water exceeding 49 degrees C the tail flick reflex to acute noxious radiant heat was inhibited. In contrast, noxious conditioning stimuli, regardless of temperature or location, had no effect on the latency for hindpaw withdrawal evoked by an acute noxious stimulus, but did produce a change in reflex topography from flexion to extension. These results, along with previous research on DNIC, suggest that intense noxious stimuli: (1) inhibit the tail flick reflex via inhibition of multireceptive neurons in the dorsal horn; (2) disinhibit hindpaw extensor motoneurons by inhibiting the activity of multireceptive neurons involved in hindlimb flexion; and (3) reduce pain sensation by inhibiting multireceptive neurons projecting to the brain (see Model in Discussion).  相似文献   

15.
The number and distribution of Fos-like-immunoreactive neurons in different supraspinal brain areas induced by formalin injection into one hindpaw was estimated in rats with transected dorsal half of the spinal cord at the thoracic level in an attempt to avoid most of the descending modulatory actions. The results showed that: (i) after spinal lesion, the peripheral noxious inputs, going up mainly through the ventral spinal cord, elicited a more widespread and densely located Fos-like-immunoreactive neurons in subcortical areas, many of them showed no Fos expression when noxious stimulation was given in rats with intact spinal cord; (ii) at the same time, a small number of subcortical areas, such as the lateral ventroposterior thalamic nucleus and dorsal raphe nucleus, exhibited no significant increase of nociceptive Fos-like immunoreactive neurons after spinal lesion as compared to that with intact spinal cord; and (iii) there appeared a prominent expansion of cortical areas with densely located Fos-like-immunoreactive neurons in spinal-lesioned rats as compared with the limited labelled areas in the control group with intact spinal cord. These results indicate that: (i) in avoiding the spinally descending modulatory mechanisms, more widespread supraspinal and cortical neurons will be recruited and activated in response to the noxious stimulation; and (ii) the descending systems exert differential actions on the spinal targets which project nociceptive signals to different supraspinal regions. The implication of these facts is discussed.  相似文献   

16.
Secretoneurin is a recently discovered neuropeptide derived from secretogranin II (SgII). Since this peptide could be detected in the dorsal horn of the spinal cord we studied whether it is localized in and released from primary afferent neurons. Secretoneurin was investigated with immunocytochemistry and radioimmunoassay in spinal cord, dorsal root ganglia and peripheral organs. SgII mRNA was determined in dorsal root ganglia. Normal rats and rats pre-treated neonatally with capsaicin to destroy selectively polymodal nociceptive (C-) fibres were used. Slices of dorsal spinal cord were perfused in vitro for release experiments. Immunocytochemistry showed a distinct distribution of secretoneurin-immunoreactivity (IR) in the spinal cord and, lower brainstem. A particularly high density of fibres was found in lamina I and outer lamina II of the caudal trigeminal nucleus and of the spinal cord. This distribution was qualitatively identical in rat and human post-mortem tissue. Numerous small diameter and some large dorsal root ganglia neurons were found to contain SgII mRNA. Capsaicin treatment led to a marked depletion of secretoneurin-IR in the substantia gelatinosa, but not in other immunopositive areas of the spinal cord and to a substantial loss of small (< 25 microns) SgII-mRNA-containing dorsal root ganglia neurons. Radioimmunoassay revealed a significant decrease of secretoneurin-IR in the dorsal spinal cord, the trachea, heart and urinary bladder of capsaicin-treated rats. Perfusion of spinal cord slices with capsaicin as well as with 60 mM potassium led to a release of secretoneurin-IR. In conclusion, secretoneurin is a neuropeptide which is stored in and released from capsaicin-sensitive, primary afferent (C-fibre) neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
High threshold voltage-dependent P- and Q-type calcium channels are involved in neurotransmitter release. In order to investigate the role of P- and Q-type calcium channels in the mechanosensory (nociceptive) processing in the spinal cord, their participation in the responses of spinal wide-dynamic-range neurons to innocuous and noxious mechanical stimulation of the knee and ankle joints was studied in 30 anaesthetized rats. The knee was either normal or acutely inflamed by kaolin/carrageenan. During the topical application of omega-agatoxin IVA (P-type channel antagonist, 0.1 microM) onto the dorsal surface of the spinal cord, the responses to innocuous and noxious pressure applied to the normal knee were increased to respectively 124 +/- 42% and 114 +/- 23% of predrug values (mean +/- SD, P < 0.05, 14 neurons). By contrast, in rats with an inflamed knee, the responses to innocuous and noxious pressure applied to the knee were reduced to respectively 72 +/- 19 and 73 +/- 22% of baseline (mean +/- SD, P < 0.01, 13 neurons). In the same neurons, omega-agatoxin IVA slightly increased the responses to pressure on the non-inflamed ankle whether the knee was normal or inflamed. Thus P-type calcium channels seem to acquire a predominant importance in the excitation of spinal cord neurons by mechanosensory input from inflamed tissue and hence in the generation of inflammatory pain. By contrast, the Q-type channel antagonist, omega-conotoxin MVIIC (1 or 100 microM), had no significant effect upon responses to innocuous or noxious pressure applied to either normal or inflamed knees (25 neurons).  相似文献   

18.
In humans, somatic aches and pains are frequently reported during fever. To determine whether exogenous pyrogen administration increases nociceptive responsiveness in rats, the tail flick reflex evoked by noxious heat was compared in animals that received an intraperitoneal injection of exogenous pyrogen (lipopolysaccharide) or vehicle (saline). There were no differences in skin temperature between lipopolysaccharide- and vehicle-injected rats. Awake rats injected with lipopolysaccharide exhibited an increase in colonic temperature and a decrease in tail flick latency when compared to vehicle-injected rats. Neural events that trigger fever may therefore also modulate nociceptive responsiveness.  相似文献   

19.
The effect of conditioning stimulation of the central amygdaloid nucleus (ACE) on the response of tooth pulp-driven (TPD) neurons in the first somatosensory cortex (SI) was investigated in cats anesthetized with N2O-O2 (2:1) and 0.5% halothane. The tooth pulp test stimulus was a single 30-450 microA rectangular pulse, and the conditioning stimuli of the ACE were trains of 33 pulses (300 microA) delivered at 330 Hz. The ACE conditioning stimulation markedly suppressed the response of the slow-type neurons with latencies of more than 20 ms without any effect on the discharges of fast-type TPD neurons and spontaneous discharges. This inhibition was 68.9 +/- 24.7% (mean +/- SD) of the control. These findings suggest that there are at least two pathways for the ascending pulpal (nociceptive) information to the SI, and that the ACE modulates the transmission of impulses in one of the pathways.  相似文献   

20.
We investigated the electrocortical (E.Co.G) correlates of visceral (topical capsaicin application or overdistension of the urinary bladder) and somatic (perineal pinching) painful stimulation in urethane-anesthetized rats and their modulation by intrathecal application of selective tachykinins receptors (NK 1 and NK 2) antagonists. Vesical overdistension or topical capsaicin on the bladder serosal surface produced an immediate and lasting E.Co.G. desynchronization resembling a cortical arousal. A second application of capsaicin was ineffective. Bladder contraction induced by topical acetylcholine did not alter E.Co.G. A desynchronized E.Co.G. was also induced by pinching of the perineal area of the rat. Intrathecal administration of lidocaine at lumbosacral level abolished the E.Co.G. desynchronization induced by both visceral and somatic noxious stimulation. On the other hand capsaicin-induced or over-distension (but not pinching-induced) E.Co.G. desynchronization disappeared in animals systemically pretreated with capsaicin or after intrathecal administration of NK 1 tachykinin receptor antagonists such as the peptide GR 82334 or the nonpeptide RP 67580, whereas the inactive enantiomer RP 68651 or the nonpeptide NK 2 antagonists SR 48968 were ineffective. In conclusion, the experimental model described herein, allowing a quantitative analysis of the E.Co.G. correlates of visceral and somatic noxious stimulation in urethane-anesthetized rats, provides evidence for a specific neural pathway carrying bladder-arising visceral (both mechanical and chemical) nociception that uses pelvic capsaicin-sensitive afferents projecting to NK 1 (but not NK 2) bearing spinal neurons and that ultimately leads to activation of cortical areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号