首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
PLC在锅炉就地点火控制器中的应用   总被引:2,自引:2,他引:0  
本文介绍了可编程序控制器(PLC)在锅炉就地点火控制器中的应用,包括锅炉点火的步骤,就地点火控制器的功能,以及PLC在此控制器中的设计方法。  相似文献   

2.
本文在分析我国电站锅炉点火技术应用现状的基础上,介绍了一种新型的电站锅炉等离子点火控制系统,阐述了该等离子点火系统的工作原理、系统组成、控制器硬件配置和STRUC软件设计,本控制系统旨在利用恒定的直流电源把压缩空气电离,用经控制调试得到的稳定的高温等离子弧点燃炉膛内的煤粉,实现了电站锅炉的无燃油点火,节约了大量的燃料油.实验证明,该SIMADYN D控制系统可以达到锅炉燃煤等离子点火和稳燃的参数要求,不仅有节约能源、降低成本的功能,而且符合环保的要求,具有显著的经济效益和较大的推广应用价值.  相似文献   

3.
本文在分析我国电站锅炉点火技术应用现状的基础上,介绍了一种新型的电站锅炉等离子点火控制系统,阐述了该等离子点火系统的工作原理、系统组成、控制器硬件配置和STRUC软件设计,本控制系统旨在利用恒定的直流电源把压缩空气电离,用经控制调试得到的稳定的高温等离子弧点燃炉膛内的煤粉,实现了电站锅炉的无燃油点火,节约了大量的燃料油。实验证明,该SIMADYND控制系统可以达到锅炉燃煤等离子点火和稳燃的参数要求,不仅有节约能源、降低成本的功能,而且符合环保的要求,具有显著的经济效益和较大的推广应用价值。  相似文献   

4.
分析锅炉液位和温度系统的控制特点,采用VB设计锅炉液位和温度控制器,利用工控组态软件MCGS的OLE扩展功能,将液位和温度控制器嵌入到MCGS组态软件中,实现液位和温度的自动控制。  相似文献   

5.
基于模糊控制的锅炉汽包水位串级控制系统   总被引:2,自引:0,他引:2  
锅炉汽包水位控制系统是火力发电厂中一个重要的热工控制系统,它的正常运行直接关系到电厂的安全、经济运行。本文首先对锅炉汽包水位控制系统采用三冲量串级控制系统进行论证,之后分别用常规PID控制器和GENERAL模糊控制器,采用ITAE控制指标对该系统进行实时控制。最后,用MATLAB软件对该系统进行仿真。仿真结果表明,相比于常规PID控制器,模糊控制器具有良好的控制特性。  相似文献   

6.
针对燃气锅炉点火过程中出现的问题,依据锅炉设备结构知识和燃烧器的工作原理,对锅炉火焰检测保护系统进行分析,查找和解析导致点火困难的原因。通过实施一些改进和处理办法,切实提高了锅炉点火成功率。实际运行结果证明,该方法的实施获得了良好效果,基本解决了锅炉点火困难的问题。  相似文献   

7.
本文介绍了用可编程控制器及光电检测技术改进进口燃油锅炉点火控制装置,避免了点火失录及点火参数不可调问题。  相似文献   

8.
基于模糊RBF神经网络控制器的锅炉汽包水位控制的实现   总被引:1,自引:0,他引:1  
锅炉是典型的复杂热工系统。对蒸汽锅炉而言,维持汽包水位在一定的范围内是保证锅炉安全运行的首要条件。本文介绍了一种锅炉汽包水位控制器,采用基干模糊RBF神经网络整定的PID控制方法。通过对阶跃输入信号作用下系统动态性能的仿真分析,表明该控制器具有较好的适应性,控制效果得到明显改善。  相似文献   

9.
张洪 《自动化博览》2002,19(6):12-14
介绍了循环流化床锅炉油枪的床下点火的作用、组成、设备、实现功能,这种点火方式安全、可靠、简易、高效。  相似文献   

10.
锅炉汽水子系统专家控制系统   总被引:5,自引:0,他引:5  
简要介绍了EXPERT控制器和FUZZY控制器联合完成锅炉汽水子系统全部相关功能的方法,并介绍了锅炉汽水子系统协调控制在DCS中的实现。  相似文献   

11.
The Smoothed Particle Mesh Ewald method [U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995) 8577] for calculating long ranged forces in molecular simulation has been adapted for the parallel molecular dynamics code DL_POLY_3 [I.T. Todorov, W. Smith, Philos. Trans. Roy. Soc. London 362 (2004) 1835], making use of a novel 3D Fast Fourier Transform (DAFT) [I.J. Bush, The Daresbury Advanced Fourier transform, Daresbury Laboratory, 1999] that perfectly matches the Domain Decomposition (DD) parallelisation strategy [W. Smith, Comput. Phys. Comm. 62 (1991) 229; M.R.S. Pinches, D. Tildesley, W. Smith, Mol. Sim. 6 (1991) 51; D. Rapaport, Comput. Phys. Comm. 62 (1991) 217] of the DL_POLY_3 code. In this article we describe software adaptations undertaken to import this functionality and provide a review of its performance.  相似文献   

12.
We applied our recently developed kinetic computational mutagenesis (KCM) approach [L.T. Chong, W.C. Swope, J.W. Pitera, V.S. Pande, Kinetic computational alanine scanning: application to p53 oligomerization, J. Mol. Biol. 357 (3) (2006) 1039–1049] along with the MM-GBSA approach [J. Srinivasan, T.E. Cheatham 3rd, P. Cieplak, P.A. Kollman, D.A. Case, Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices, J. Am. Chem. Soc. 120 (37) (1998) 9401–9409; P.A. Kollman, I. Massova, C.M. Reyes, B. Kuhn, S. Huo, L.T. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, T.E. Cheatham 3rd., Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models, Acc. Chem. Res. 33 (12) (2000) 889–897] to evaluate the effects of all possible missense mutations on dimerization of the oligomerization domain (residues 326–355) of tumor suppressor p53. The true positive and true negative rates for KCM are comparable (within 5%) to those of MM-GBSA, although MM-GBSA is much less computationally intensive when it is applied to a single energy-minimized configuration per mutant dimer. The potential advantage of KCM is that it can be used to directly examine the kinetic effects of mutations.  相似文献   

13.
We applied our recently developed kinetic computational mutagenesis (KCM) approach [L.T. Chong, W.C. Swope, J.W. Pitera, V.S. Pande, Kinetic computational alanine scanning: application to p53 oligomerization, J. Mol. Biol. 357 (3) (2006) 1039–1049] along with the MM-GBSA approach [J. Srinivasan, T.E. Cheatham 3rd, P. Cieplak, P.A. Kollman, D.A. Case, Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices, J. Am. Chem. Soc. 120 (37) (1998) 9401–9409; P.A. Kollman, I. Massova, C.M. Reyes, B. Kuhn, S. Huo, L.T. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, T.E. Cheatham 3rd., Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models, Acc. Chem. Res. 33 (12) (2000) 889–897] to evaluate the effects of all possible missense mutations on dimerization of the oligomerization domain (residues 326–355) of tumor suppressor p53. The true positive and true negative rates for KCM are comparable (within 5%) to those of MM-GBSA, although MM-GBSA is much less computationally intensive when it is applied to a single energy-minimized configuration per mutant dimer. The potential advantage of KCM is that it can be used to directly examine the kinetic effects of mutations.  相似文献   

14.
(i) Call a c.e. degree b anti-cupping relative to x, if there is a c.e. a < b such that for any c.e. w, w x implies a ∪ w b ∪ x.(ii) Call a c.e. degree b everywhere anti-cupping (e.a.c.), if it is anti-cupping relative to x for each c.e. degree x.By a tree method, we prove that every high c.e. degree has e.a.c. property by extending Harrington's anti-cupping theorem.  相似文献   

15.
The discoveries of continuations   总被引:4,自引:0,他引:4  
We give a brief account of the discoveries of continuations and related concepts by A. van Wijngaarden, A. W. Mazurkiewicz, F. L. Morris, C. P. Wadsworth, J. H. Morris, M. J. Fischer, and S. K. Abdali.  相似文献   

16.
The purpose of this study is to give a Taylor polynomial approximation for the solution of hyperbolic type partial differential equations with constant coefficients. The technique used is an improved Taylor matrix method, which has been given for solving ordinary differential, integral and integro-differential equations [M. Gülsu and M. Sezer, A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Int. J. Comput. Math. 82(5) (2005), pp. 629–642; M. Gülsu and M. Sezer, On the solution of the Riccati equation by the Taylor matrix method, Appl. Math. Comput. 188 (2007), pp. 446–449; A. Karamete and M. Sezer, A Taylor collocation method for the solution of linear integro-differential equations, Int. J. Comput. Math. 79(9) (2002), pp. 987–1000; N. Kurt and M. Çevik, Polynomial solution of the single degree of freedom system by Taylor matrix method, Mech. Res. Commun. 35 (2008), pp. 530–536; N. Kurt and M. Sezer, Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients, J. Franklin Inst. 345 (2008), pp. 839–850; ?. Nas, S. Yalçinba?, and M. Sezer, A method for approximate solution of the high-order linear Fredholm integro-differential equations, Int. J. Math. Edu. Sci. Technol. 27(6) (1996), pp. 821–834; M. Sezer, Taylor polynomial solution of Volterra integral equations, Int. J. Math. Edu. Sci. Technol. 25(5) (1994), pp. 625–633; M. Sezer, A method for approximate solution of the second order linear differential equations in terms of Taylor polynomials, Int. J. Math. Edu. Sci. Technol. 27(6) (1996), pp. 821–834; M. Sezer, M. Gülsu, and B. Tanay, A matrix method for solving high-order linear difference equations with mixed argument using hybrid Legendre and Taylor polynomials, J. Franklin Inst. 343 (2006), pp. 647–659; S. Yalçinba?, Taylor polynomial solutions of nonlinear Volterra–Fredholm integral equation, Appl. Math. Comput. 127 (2002), pp. 196–206; S. Yalçinba? and M. Sezer, The approximate solution of high-order linear Volterra–Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput. 112 (2000), pp. 291–308]. Some numerical examples, which consist of initial and boundary conditions, are given to illustrate the reliability and efficiency of the method. Also, the results obtained are compared by the known results; the error analysis is performed and the accuracy of the solution is shown.  相似文献   

17.
It is well known that there is no analytic expression for the electrical capacitance of the unit cube. However, there are several Monte Carlo methods that have been used to numerically estimate this capacitance to high accuracy. These include a Brownian dynamics algorithm [H.-X. Zhou, A. Szabo, J.F. Douglas, J.B. Hubbard, A Brownian dynamics algorithm for calculating the hydrodynamic friction and the electrostatic capacitance of an arbitrarily shaped object, J. Chem. Phys. 100 (5) (1994) 3821–3826] coupled to the “walk on spheres” (WOS) method [M.E. Müller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Stat. 27 (1956) 569–589]; the Green’s function first-passage (GFFP) algorithm [J.A. Given, J.B. Hubbard, J.F. Douglas, A first-passage algorithm for the hydrodynamic friction and diffusion-limited reaction rate of macromolecules, J. Chem. Phys. 106 (9) (1997) 3721–3771]; an error-controlling Brownian dynamics algorithm [C.-O. Hwang, M. Mascagni, Capacitance of the unit cube, J. Korean Phys. Soc. 42 (2003) L1–L4]; an extrapolation technique coupled to the WOS method [C.-O. Hwang, Extrapolation technique in the “walk on spheres” method for the capacitance of the unit cube, J. Korean Phys. Soc. 44 (2) (2004) 469–470]; the “walk on planes” (WOP) method [M.L. Mansfield, J.F. Douglas, E.J. Garboczi, Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects, Phys. Rev. E 64 (6) (2001) 061401:1–061401:16; C.-O. Hwang, M. Mascagni, Electrical capacitance of the unit cube, J. Appl. Phys. 95 (7) (2004) 3798–3802]; and the random “walk on the boundary” (WOB) method [M. Mascagni, N.A. Simonov, The random walk on the boundary method for calculating capacitance, J. Comp. Phys. 195 (2004) 465–473]. Monte Carlo methods are convenient and efficient for problems whose solution includes singularities. In the calculation of the unit cube capacitance, there are edge and corner singularities in the charge density distribution. In this paper, we review the above Monte Carlo methods for computing the electrical capacitance of a cube and compare their effectiveness. We also provide a new result. We will focus our attention particularly on two Monte Carlo methods: WOP [M.L. Mansfield, J.F. Douglas, E.J. Garboczi, Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects, Phys. Rev. E 64 (6) (2001) 061401:1–061401:16; C.-O. Hwang, M. Mascagni, Electrical capacitance of the unit cube, J. Appl. Phys. 95 (7) (2004) 3798–3802; C.-O. Hwang, T. Won, Edge charge singularity of conductors, J. Korean Phys. Soc. 45 (2004) S551–S553] and the random WOB [M. Mascagni, N.A. Simonov, The random walk on the boundary method for calculating capacitance, J. Comp. Phys. 195 (2004) 465–473] methods.  相似文献   

18.
《国际计算机数学杂志》2012,89(14):3273-3296
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Newton-type methods. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in many interesting cases [X. Chen, On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms, Ann. Inst. Statist. Math. 42 (1990), pp. 387–401; X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. Optim. 10 (1989), pp. 37–48; Y. Chen and D. Cai, Inexact overlapped block Broyden methods for solving nonlinear equations, Appl. Math. Comput. 136 (2003), pp. 215–228; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in Nonlinear Functional Analysis and Applications, L.B. Rall, ed., Academic Press, New York, 1971, pp. 425–472; P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics, Vol. 35, Springer-Verlag, Berlin, 2004; P. Deuflhard and G. Heindl, Affine invariant convergence theorems for Newton's method and extensions to related methods, SIAM J. Numer. Anal. 16 (1979), pp. 1–10; Z. Huang, A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993), pp. 211–217; L.V. Kantorovich and G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; D. Li and M. Fukushima, Globally Convergent Broyden-like Methods for Semismooth Equations and Applications to VIP, NCP and MCP, Optimization and Numerical Algebra (Nanjing, 1999), Ann. Oper. Res. 103 (2001), pp. 71–97; C. Ma, A smoothing Broyden-like method for the mixed complementarity problems, Math. Comput. Modelling 41 (2005), pp. 523–538; G.J. Miel, Unified error analysis for Newton-type methods, Numer. Math. 33 (1979), pp. 391–396; G.J. Miel, Majorizing sequences and error bounds for iterative methods, Math. Comp. 34 (1980), pp. 185–202; I. Moret, A note on Newton type iterative methods, Computing 33 (1984), pp. 65–73; F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985), pp. 71–84; W.C. Rheinboldt, A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal. 5 (1968), pp. 42–63; T. Yamamoto, A convergence theorem for Newton-like methods in Banach spaces, Numer. Math. 51 (1987), pp. 545–557; P.P. Zabrejko and D.F. Nguen, The majorant method in the theory of Newton–Kantorovich approximations and the Pták error estimates, Numer. Funct. Anal. Optim. 9 (1987), pp. 671–684; A.I. Zin[cbreve]enko, Some approximate methods of solving equations with non-differentiable operators, (Ukrainian), Dopovidi Akad. Nauk Ukraïn. RSR (1963), pp. 156–161]. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.  相似文献   

19.
Although the observations concerning the factors which influence the siRNA efficacy give clues to the mechanism of RNAi, the quantitative prediction of the siRNA efficacy is still a challenge task. In this paper, we introduced a novel non-linear regression method: random forest regression (RFR), to quantitatively estimate siRNAs efficacy values. Compared with an alternative machine learning regression algorithm, support vector machine regression (SVR) and four other score-based algorithms [A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W.S. Marshall, A. Khvorova, Rational siRNA design for RNA interference, Nat. Biotechnol. 22 (2004) 326-330; K. Ui-Tei, Y. Naito, F. Takahashi, T. Haraguchi, H. Ohki-Hamazaki, A. Juni, R. Ueda, K. Saigo, Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference, Nucleic Acids Res. 32 (2004) 936-948; A.C. Hsieh, R. Bo, J. Manola, F. Vazquez, O. Bare, A. Khvorova, S. Scaringe, W.R. Sellers, A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens, Nucleic Acids Res. 32 (2004) 893-901; M. Amarzguioui, H. Prydz, An algorithm for selection of functional siRNA sequences, Biochem. Biophys. Res. Commun. 316 (2004) 1050-1058) our RFR model achieved the best performance of all. A web-server, RFRCDB-siRNA (http://www.bioinf.seu.edu.cn/siRNA/index.htm), has been developed. RFRCDB-siRNA consists of two modules: a siRNA-centric database and a RFR prediction system. RFRCDB-siRNA works as follows: (1) Instead of directly predicting the gene silencing activity of siRNAs, the service takes these siRNAs as queries to search against the siRNA-centric database. The matched sequences with the exceeding the user defined functionality value threshold are kept. (2) The mismatched sequences are then processed into the RFR prediction system for further analysis.  相似文献   

20.
We extend the POMWIG Monte Carlo generator developed by B. Cox and J. Forshaw, to include new models of central production through inclusive and exclusive double Pomeron exchange in proton-proton collisions. Double photon exchange processes are described as well, both in proton-proton and heavy-ion collisions. In all contexts, various models have been implemented, allowing for comparisons and uncertainty evaluation and enabling detailed experimental simulations.

Program summary

Title of the program:DPEMC, version 2.4Catalogue identifier: ADVFProgram summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVFProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandComputer: any computer with the FORTRAN 77 compiler under the UNIX or Linux operating systemsOperating system: UNIX; LinuxProgramming language used: FORTRAN 77High speed storage required:<25 MBNo. of lines in distributed program, including test data, etc.: 71 399No. of bytes in distributed program, including test data, etc.: 639 950Distribution format: tar.gzNature of the physical problem: Proton diffraction at hadron colliders can manifest itself in many forms, and a variety of models exist that attempt to describe it [A. Bialas, P.V. Landshoff, Phys. Lett. B 256 (1991) 540; A. Bialas, W. Szeremeta, Phys. Lett. B 296 (1992) 191; A. Bialas, R.A. Janik, Z. Phys. C 62 (1994) 487; M. Boonekamp, R. Peschanski, C. Royon, Phys. Rev. Lett. 87 (2001) 251806; Nucl. Phys. B 669 (2003) 277; R. Enberg, G. Ingelman, A. Kissavos, N. Timneanu, Phys. Rev. Lett. 89 (2002) 081801; R. Enberg, G. Ingelman, L. Motyka, Phys. Lett. B 524 (2002) 273; R. Enberg, G. Ingelman, N. Timneanu, Phys. Rev. D 67 (2003) 011301; B. Cox, J. Forshaw, Comput. Phys. Comm. 144 (2002) 104; B. Cox, J. Forshaw, B. Heinemann, Phys. Lett. B 540 (2002) 26; V. Khoze, A. Martin, M. Ryskin, Phys. Lett. B 401 (1997) 330; Eur. Phys. J. C 14 (2000) 525; Eur. Phys. J. C 19 (2001) 477; Erratum, Eur. Phys. J. C 20 (2001) 599; Eur. Phys. J. C 23 (2002) 311]. This program implements some of the more significant ones, enabling the simulation of central particle production through color singlet exchange between interacting protons or antiprotons.Method of solution: The Monte Carlo method is used to simulate all elementary 2→2 and 2→1 processes available in HERWIG. The color singlet exchanges implemented in DPEMC are implemented as functions reweighting the photon flux already present in HERWIG.Restriction on the complexity of the problem: The program relying extensively on HERWIG, the limitations are the same as in [G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles, M.H. Seymour, L. Stanco, Comput. Phys. Comm. 67 (1992) 465; G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. Seymour, B. Webber, JHEP 0101 (2001) 010].Typical running time: Approximate times on a 800 MHz Pentium III: 5-20 min per 10 000 unweighted events, depending on the process under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号