首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
PLED based flat panel displays with RGBW sub-pixel format utilizing a white emitter as the fourth primary, was analyzed theoretically and experimentally. Instead of the traditional white point characterization method, uniform luminance color space was introduced to characterize the display performance in a more realistic way. In the uniform luminance color space, after the power efficiency of the white emitter exceeds a threshold determined by the green emitter’s efficiency, the RGBW display becomes more energy efficient than the RGB display. To simulate the display performance in different applications, such as computer desktop visualization, or video application, the color usage frequency with Gaussian distribution was adopted. As the color usage frequency distribution gets closer to that in the real images, the full color pixel’s power efficiency of the RGBW display is more and more dependent on the EL performance of the white emitter. With a highly efficient white emitter as W sub-pixel, the RGBW display will be the preferable choice for displaying video information.  相似文献   

2.
To make a full color organic electroluminescent display, conventionally it requires three fine metal shadow masks (FMM) to pattern the red, green and blue light-emitting layer. In this work, by arranging the blue light-emitting layer as a shared layer for all sub-pixels, we demonstrate that a full color display can be achieved by two FMM processes, thus reducing one FMM process compared to conventional method. The red, green and blue sub-pixels can be optimized independently despite the reduction of one FMM process. Also, the performance of the red and green sub-pixels is not degraded by the shared blue light-emitting layer. Due to elimination of one FMM, the process TACT time, mask cost and alignment error can all be reduced, thus cutting down the manufacturing cost of full color organic electroluminescent display.  相似文献   

3.
By changing the thickness of hole transport layer to control the cavity length, a top-emitting white organic light-emitting diode (TWOLED) with three individual narrow peaks matching well with the three primary color filters has been successfully realized. It is very important to carefully design the multimode microcavity for the achievement of the three-peak spectrum. Compared with the bottom-emitting white organic light-emitting diodes (BWOLEDs), the TWOLEDs exhibit improved color purity and a wider color gamut due to the narrow emissive spectrum. The maximum current efficiency and power efficiency of TWOLED reach 28.9 cd/A and 27.5 lm/W, respectively. It is predicted that this kind of three-peak TWOLEDs is suitable for the high-quality display application.  相似文献   

4.
利用基色光混色的方法对三基色和四基色白光LED进行了配色研究。固定相关色温为(5 500±20)K的条件下,在可见光范围内将不同峰值波长、半宽的基色光进行混色,得到显色指数和光视效能与峰值波长和半宽的关系。其中,三、四基色白光LED的显色指数最高分别达到89和96.7,对应的光视效能分别为353lm/W和340lm/W。同时,计算结果表明,增加基色光的数目后,提高了白光LED的显色性及显色稳定性。  相似文献   

5.
An excellent hybrid III‐nitride/nanocrystal nanohole light‐emitting diode (h‐LED) has been developed utilizing nonradiative resonant energy transfer (NRET) between violet/blue emitting InGaN/GaN multiple quantum wells (MQWs) and various wavelength emitting nanocrystals (NCs) as color‐conversion mediums. InGaN/GaN MQWs are fabricated into nanoholes by soft nanoimprint lithography to minimize the separation between MQWs and NCs. A significant reduction in the decay lifetime of excitons in the MQWs of the hybrid structure has been observed as a result of the NRET from the nitride emitter to NCs. The NRET efficiency of the hybrid structures is obtained from the decay curves, as high as 80%. Moreover, a modified Förster formulation has exhibited that the exciton coupling distance in the hybrid structures is less than the Förster's radius, demonstrating a strong coupling between MQWs and NCs. Finally, based on a systemic optimization for white emission indexes, a series of hybrid ternary complementary color h‐LEDs have been demonstrated with a high color rendering index, up to 82, covering the white light emission at different correlated color temperatures ranging from 2629 to 6636 K, corresponding to warm white, natural white, and cold white.  相似文献   

6.
王莉莉  屠彦 《电子器件》2004,27(4):636-640
目前通用的三基色显示系统无法精确再现色谱图上高饱和度的颜色,而采用增加基色数量的方法将颜色三角形扩展为多边形.就能够扩大系统所能再现的色域,得到良好的再现色彩。本文论述了在保持原三基色的前提下,基于DLP实验平台的多基色系统中滤色片的设计过程,该多基色系统能够对原有的色域范围有较大的扩展作用。  相似文献   

7.
High-efficiency blue and white organic light-emitting devices (OLEDs) combined fluorescent and phosphorescent blue emitters were reported. The hybrid blue OLED showed better color purity than that of all phosphorescent device without sacrificing efficiency. The maximum power efficiency of the blue device could reach 23.5 lm/W with the CIE coordinates of (0.163, 0.325). High-efficiency white OLED with maximum power efficiency of 50.6 lm/W was obtained by combined such hybrid blue device and ultrathin phosphorescent yellow emitter. At the practical brightness of 1000 cd/m2, the power efficiency of the white device was 28.3 lm/W with a low voltage of 3.37 V and CIE coordinates of (0.40, 0.44). The excitons recombination zone was adjusted by the introduction of the fluorescent blue emitter which resulting a relative high color rendering index and power efficiency of the white device.  相似文献   

8.
Microdisplays based on organic light-emitting diodes (OLEDs) have a small form factor, and this can be a great advantage when applied to augmented reality and virtual reality devices. In addition, a high-resolution microdisplay of 3000 ppi or more can be achieved when applying a white OLED structure and a color filter. However, low luminance is the weakness of an OLED-based microdisplay as compared with other microdisplay technologies. By applying a tandem structure consisting of two separate emission layers, the efficiency of the OLED device is increased, and higher luminance can be achieved. The efficiency and white spectrum of the OLED device are affected by the position of the emitting layer in the tandem structure and calculated via optical simulation. Each white OLED device with optimized efficiency is fabricated according to the position of the emitting layer, and red, green, and blue spectrum and efficiency are confirmed after passing through color filters. The optimized white OLED device with color filters reaches 97.8% of the National Television Standards Committee standard.  相似文献   

9.
开展了RGB激光器及单色激光器对自动模式下的彩色CCD相机的外场干扰实验,理论分析及实验结果表明:较强激光照射将使CCD靶面上出现串音现象;较长时间的强激光照射可造成CCD像元的永久性损伤,并能使相机全靶面饱和;在相同实验条件下,RGB三色激光器比单色激光器更易获得全通道饱和干扰图像,单色激光器若要获得与RGB三色激光器类似的全通道干扰效果,其激光功率应为RGB激光器的10倍以上;相机拍摄背景的不同会给干扰带来很大影响,全色背景比单色背景更难获取良好的干扰效果。  相似文献   

10.
文章基于瓦级大功率白光LED在照明领域应用的广泛性和重要性,展开了瓦级大功率白光LED光色电特性的研究。采用大功率LED封装设备与紫外-可见光-近紫外光谱分析系统,制备并测量了瓦级大功率白色发光二极管(LED)在不同正向电流IF驱动下的光通量、电功率、发光效率、发射光谱和色品坐标等参数。研究表明,光通量与电功率随耳的增大呈亚线性增长的趋势,而荧光粉转换效率下降是影响其辐射功率的主要原因之一。当电流增大时,白光LED光谱的蓝光峰值出现先蓝移后红移的现象,而黄光部分光谱形状无明显变化。此外,色坐标x、y值均随着IF的增大而降低,主波长减小,色温值升高。  相似文献   

11.
A new hybrid local and charge transfer (HLCT) molecule 2TPA-PPI is obtained for constructing the high-performance organic light-emitting diodes (OLEDs) in this work. 2TPA-PPI possesses the sufficient emission/charge-transporting properties, thus it is used as a neat emitter achieving an efficient deep-blue OLED with very high external quantum efficiency (EQE) up to 10.7%, as well as a multi-functional emitting host matrix constructing the high-performance phosphorescent OLEDs. More importantly, a high-efficiency candle light-style OLED adopting the HLCT/phosphor hybrid strategy is realized, where 2TPA-PPI acts as not only a blue emitter, but also a universal host sensitizing both yellow and red phosphors. This quasi-white OLED represents almost the highest EQE/PE level of 25.2%/49.7 lm W−1 at the practical luminance level of 1000 cd m−2 for the white OLEDs with the excellent color rendering index values of more than 80 reported.  相似文献   

12.
Two different hybrid white organic light-emitting diodes (WOLEDs) with red/blue phosphorescent emitters and a green thermally activated delayed fluorescent (TADF) emitter were designed to develop high efficiency hybrid WOLEDs. One hybrid WOLED (type I) had a device structure with a hybrid emitting layer of green TADF and red phosphorescent emitters stacked on a blue phosphorescent emitting layer and the other hybrid WOLED (type II) had a device architecture with the green TADF emitting layer stacked on a red and blue phosphorescent emitting layer. Efficient energy transfer from the green TADF emitter to the red phosphorescent emitter was observed and balanced white emission could be obtained by optimizing the device structure of the hybrid WOLEDs. A quantum efficiency of 16.2% with a color coordinate of (0.45,0.47) and a quantum efficiency of 18.0% with a color coordinate of (0.37,0.47) were achieved in the type I and type II hybrid WOLEDs, respectively.  相似文献   

13.
14.
Implementing rigorous standards for high‐quality white organic light‐emitting diodes (WOLEDs) demands further investigation. Herein, a novel and feasible color remedy strategy (CRS) is proposed in WOLEDs composed of binary‐emitters, to arouse the green‐emission, thereby complementing the spectral deficiency in white‐emission. Thus, the color rendering indexes (CRIs) of binary‐emissive WOLEDs can be boosted from 63 to 80 threshold, and the Commission International de I'Eclairage‐(x, y) coordinates are precisely located inside the American National Standard Institute quadrangles, which can rival the WOLEDs integrating ternary or more emitters. Moreover, it is more feasible for CRS‐based binary‐emissive system to tune white‐emission from cool white‐emission (correlated color temperature (CCT) ≈ 5000 K) to eye‐friendly warm white‐emission (CCT ≈ 2000 K). Meanwhile, benefiting from the reduced energy loss and low driving voltage of CRS zone, all of the CRS‐based WOLEDs with diverse CCTs can exceed 20% external quantum efficiency, and the highest approach 25%, as well as the highest power efficiency beyond 60 lm W?1, which is comparable with those reported employing light‐extracting techniques. In addition, it is evident that CRS‐based WOLEDs also exhibit outstanding color stability within the variation of luminance in several orders of magnitude (50–12 000 cd m?2). Thus, this novel CRS provides an innovative pathway to fabricate high‐quality WOLEDs composed of binary emitters.  相似文献   

15.
A novel yellowish‐green triplet emitter, bis(5‐(trifluoromethyl)‐2‐p‐tolylpyridine) (acetylacetonate)iridium(III) (1), was conveniently synthesized and used in the fabrication of both monochromatic and white organic light‐emitting diodes (WOLEDs). At the optimal doping concentration, monochromatic devices based on 1 exhibit a high efficiency of 63 cd A?1 (16.3% and 36.6 lm W?1) at a luminance of 100 cd m?2. By combining 1 with a phosphorescent sky‐blue emitter, bis(3,5‐difluoro‐2‐(2‐pyridyl)phenyl)‐(2‐carboxypyridyl)iridium(III) (FIrPic), and a red emitter, bis(2‐benzo[b]thiophen‐2‐yl‐pyridine)(acetylacetonate)iridium(III) (Ir(btp)2(acac)), the resulting electrophosphorescent WOLEDs show three evenly separated main peaks and give a high efficiency of 34.2 cd A?1 (13.2% and 18.5 lm W?1) at a luminance of 100 cd m?2. When 1 is mixed with a deep‐blue fluorescent emitter, 4,4′‐bis(9‐ethyl‐3‐carbazovinylene)‐1,1′‐biphenyl (BCzVBi), and Ir(btp)2(acac), the resulting hybrid WOLEDs demonstrate a high color‐rendering index of 91.2 and CIE coordinates of (0.32, 0.34). The efficient and highly color‐pure WOLEDs based on 1 with evenly separated red, green, blue peaks and a high color‐rendering index outperform those of the state‐of‐the‐art emitter, fac‐tris(2‐phenylpyridine)iridium(III) (Ir(ppy)3), and are ideal candidates for display and lighting applications.  相似文献   

16.
Phosphorescent organic light emitting diodes (PHOLEDs) have undergone tremendous growth over the past two decades. Indeed, they are already prevalent in the form of mobile displays, and are expected to be used in large‐area flat panels recently. To become a viable technology for next generation solid‐state light source however, PHOLEDs face the challenge of achieving concurrently a high color rendering index (CRI) and a high efficiency at high luminance. To improve the CRI of a standard three color white PHOLED, one can use a greenish‐yellow emitter to replace the green emitter such that the gap in emission wavelength between standard green and red emitters is eliminated. However, there are relatively few studies on greenish‐yellow emitters for PHOLEDs, and as a result, the performance of greenish‐yellow PHOLEDs is significantly inferior to those emitting in the three primary colors, which are driven strongly by the display industry. Herein, a newly synthesized greenish‐yellow emitter is synthesized and a novel device concept is introduced featuring interzone exciton transfer to considerably enhance the device efficiency. In particular, high external quantum efficiencies (current efficiencies) of 21.5% (77.4 cd/A) and 20.2% (72.8 cd/A) at a luminance of 1000 cd/m2 and 5000 cd/m2, respectively, have been achieved. These efficiencies are the highest reported to date for greenish‐yellow emitting PHOLEDs. A model for this unique design is also proposed. This design could potentially be applied to enhance the efficiency of even longer wavelength yellow and red emitters, thereby paving the way for a new avenue of tandem white PHOLEDs for solid‐state lighting.  相似文献   

17.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

18.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

19.
《Organic Electronics》2008,9(6):959-963
We developed an approach to realize blue, green and red emission from top-emitting white organic light-emitting diodes (OLEDs) through depositing exterior tunable optical films on top of the OLEDs. Three primary colors for full color display including blue, green and red emission are achieved by controlling the wavelength-dependent transmittance of the multilayer optical films overlaid on the emissive layer. The advantage of such a device configuration is that the emissive color of the OLEDs can be tuned via the exterior optical films which do not affect the electrical characteristics of the device. This may provide a way to realize full color display by using white top-emitting OLEDs.  相似文献   

20.
Accurate color reproduction using image sensors requires four narrow-band absorbing photodetectors (blue, green, yellow and red). Current photodetectors use a broadband photodetector in combination with color filters, which generally do not have sufficient wavelength discrimination for illuminant independent color recognition. We have developed a green-sensitive organic photodetector, in which color selection is achieved using a narrow-absorbing ketocyanine chromophore, coupled with a low finesse electro-optical cavity inducing further spectral narrowing. The optimized device contained a bulk heterojunction light-absorbing layer comprised of a ketocyanine dye blended with [6,6]-phenyl-C61-butyric acid methyl ester. The photodetector had a response full width at half maximum of 80 nm centered around 525 nm, and an external quantum efficiency of 15% at −1.0 V, which is the highest so far reported for a narrow band green-absorbing organic photodetector. The performance of this detector is sufficient to meet the specifications required by machine vision systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号