共查询到20条相似文献,搜索用时 15 毫秒
1.
William L. McGill 《Computers & Structures》2008,86(10):1052-1060
This paper applies the Transferable Belief Model (TBM) interpretation of the Dempster-Shafer theory of evidence to estimate parameter distributions for probabilistic structural reliability assessment based on information from previous analyses, expert opinion, or qualitative assessments (i.e., evidence). Treating model parameters as credal variables, the suggested approach constructs a set of least-committed belief functions for each parameter defined on a continuous frame of real numbers that represent beliefs induced by the evidence in the credal state, discounts them based on the relevance and reliability of the supporting evidence, and combines them to obtain belief functions that represent the aggregate state of belief in the true value of each parameter. Within the TBM framework, beliefs held in the credal state can then be transformed to a pignistic state where they are represented by pignistic probability distributions. The value of this approach lies in its ability to leverage results from previous analyses to estimate distributions for use within a probabilistic reliability and risk assessment framework. The proposed methodology is demonstrated in an example problem that estimates the physical vulnerability of a notional office building to blast loading. 相似文献
2.
3.
The present paper focuses on the fusion, based on imprecise and uncertain information, between a Geographic Information System (GIS) and a Speed Limit Sign Recognition System (SLSRS), performed on camera images. This study is dedicated to the development of a Speed Limit Assistant (SLA) in the context of vehicle driving aid. The proposed SLA is developed within the Evidence Theory framework. The information from the sources is interpreted as belief functions using a non-antagonistic basic belief assignment (bba) in the Transferable Belief Model (TBM) semantics. This bba ensures that the conflict which could appear after the global fusion is exclusively due to source discordances. The present paper proposes a way to manage these discordances by formalizing a conflict-related constraint decision rule. As far as the application is concerned, a two-level (decentralized) fusion architecture is developed. The sensor relevancy is estimated in a first step, followed by the GIS intra-sensor fusion with a maximum of Credibility decision which determines the context-compliant speed candidate considering the road information given by the digital map. This allows the detection of possible errors of the GIS. The multi-sensor fusion then combines the GIS and SLSRS information considering that the sensors are independent and specialized in one speed, each. For the decision, two strategies are adopted. The first one considers the conflict as a threshold for the final speed selection, and so allows the SLA to stay undecided in case of highly conflicting situations. The second strategy employs the 5th version of the Proportional Conflict Redistribution operator. The SLA has been tested in simulation and in real-time experiments by qualitative and quantitative performance evaluations. 相似文献
4.
Human action recognition, defined as the understanding of the human basic actions from video streams, has a long history in the area of computer vision and pattern recognition because it can be used for various applications. We propose a novel human action recognition methodology by extracting the human skeletal features and separating them into several human body parts such as face, torso, and limbs to efficiently visualize and analyze the motion of human body parts.Our proposed human action recognition system consists of two steps: (i) automatic skeletal feature extraction and splitting by measuring the similarity between neighbor pixels in the space of diffusion tensor fields, and (ii) human action recognition by using multiple kernel based Support Vector Machine. Experimental results on a set of test database show that our proposed method is very efficient and effective to recognize the actions using few parameters. 相似文献
5.
为了满足在复杂环境下对人体动作识别的需求,提出了一种基于场景理解的双流网络识别结构。将场景信息作为辅助信息加入了人体动作识别网络结构中,改善识别网络的识别准确率。对场景识别网络与人体动作识别网络不同的融合方式进行研究,确定了网络最佳识别结构。通过分析不同参数对识别准确率的影响,最终确定了双流网络的所有结构参数,设计并训练完成了双流网络结构。通过在UCF50,UCF101等公开数据集上实验,分别取得了95%,93%的准确率,高于典型的识别网络结果。对其他一些典型识别网络加入同样场景信息进行了研究,其实验结果证明了此方法可以有效改善识别准确率。 相似文献
6.
This paper proposes a boosting EigenActions algorithm for human action recognition. A spatio-temporal Information Saliency Map (ISM) is calculated from a video sequence by estimating pixel density function. A continuous human action is segmented into a set of primitive periodic motion cycles from information saliency curve. Each cycle of motion is represented by a Salient Action Unit (SAU), which is used to determine the EigenAction using principle component analysis. A human action classifier is developed using multi-class Adaboost algorithm with Bayesian hypothesis as the weak classifier. Given a human action video sequence, the proposed method effectively locates the SAUs in the video, and recognizes the human actions by categorizing the SAUs. Two publicly available human action databases, namely KTH and Weizmann, are selected for evaluation. The average recognition accuracy are 81.5% and 98.3% for KTH and Weizmann databases, respectively. Comparative results with two recent methods and robustness test results are also reported. 相似文献
7.
目的 为了提高视频中动作识别的准确度,提出基于动作切分和流形度量学习的视频动作识别算法。方法 首先利用基于人物肢体伸展程度分析的动作切分方法对视频中的动作进行切分,将动作识别的对象具体化;然后从动作片段中提取归一化之后的全局时域特征和空域特征、光流特征、帧内的局部旋度特征和散度特征,构造一种7×7的协方差矩阵描述子对提取出的多种特征进行融合;最后结合流形度量学习方法有监督式地寻找更优的距离度量算法提高动作的识别分类效果。结果 对Weizmann公共视频集的切分实验统计结果表明本文提出的视频切分方法具有很好的切分能力,能够作好动作识别前的预处理;在Weizmann公共视频数据集上进行了流形度量学习前后的识别效果对比,结果表明利用流形度量学习方法对动作识别效果提升2.8%;在Weizmann和KTH两个公共视频数据集上的平均识别率分别为95.6%和92.3%,与现有方法的比较表明,本文提出的动作识别方法有更好的识别效果。结论 多次实验结果表明本文算法在预处理过程中动作切分效果理想,描述动作所构造协方差矩阵对动作的表达有良好的多特征融合能力,而且光流信息和旋度、散度信息的加入使得人体各部位的运动方向信息具有了更多细节的描述,有效提高了协方差矩阵的描述能力,结合流形度量学习方法对动作识别的准确性有明显提高。 相似文献
8.
人体动作识别是计算机视觉领域的核心研究方向之一,在很多场合都有应用。深 度卷积神经网络在静态图像识别方面已取得了巨大成功,并逐渐扩展到视频内容识别领域,但 应用依然面临很大挑战。为此提出一种基于 ResNeXt 深度神经网络模型用于视频中的人体动作 识别,主要包括:①使用新型 ResNeXt 网络结构代替原有的各种卷积神经网络结构,并使用 RGB 和光流 2 种模态的数据,使模型可充分地利用视频中动作外观及时序信息;②将端到端的 视频时间分割策略应用于 ResNeXt 网络模型,同时将视频分为 K 段实现对视频序列的长范围时 间结构进行建模,并通过测试得到最优视频分段值 K,使模型能更好地区分存在子动作共享现 象的相似动作,解决某些由于子动作相似而易发生的误判问题。通过在动作识别数据集 UCF101 和 HMDB51 上进行的测试表明,该模型和方法的动作识别准确率性能优于目前文献中的一些模 型和方法的性能。 相似文献
9.
It is well known that different frames play different roles in feature learning in video based human action recognition task. However, most existing deep learning models put the same weights on different visual and temporal cues in the parameter training stage, which severely affects the feature distinction determination. To address this problem, this paper utilizes the visual attention mechanism and proposes an end-to-end two-stream attention based LSTM network. It can selectively focus on the effective features for the original input images and pay different levels of attentions to the outputs of each deep feature maps. Moreover, considering the correlation between two deep feature streams, a deep feature correlation layer is proposed to adjust the deep learning network parameter based on the correlation judgement. In the end, we evaluate our approach on three different datasets, and the experiments results show that our proposal can achieve the state-of-the-art performance in the common scenarios. 相似文献
10.
目的 视频中的人体行为识别技术对智能安防、人机协作和助老助残等领域的智能化起着积极的促进作用,具有广泛的应用前景。但是,现有的识别方法在人体行为时空特征的有效利用方面仍存在问题,识别准确率仍有待提高。为此,本文提出一种在空间域使用深度学习网络提取人体行为关键语义信息并在时间域串联分析从而准确识别视频中人体行为的方法。方法 根据视频图像内容,剔除人体行为重复及冗余信息,提取最能表达人体行为变化的关键帧。设计并构造深度学习网络,对图像语义信息进行分析,提取表达重要语义信息的图像关键语义区域,有效描述人体行为的空间信息。使用孪生神经网络计算视频帧间关键语义区域的相关性,将语义信息相似的区域串联为关键语义区域链,将关键语义区域链的深度学习特征计算并融合为表达视频中人体行为的特征,训练分类器实现人体行为识别。结果 使用具有挑战性的人体行为识别数据集UCF (University of Central Florida)50对本文方法进行验证,得到的人体行为识别准确率为94.3%,与现有方法相比有显著提高。有效性验证实验表明,本文提出的视频中关键语义区域计算和帧间关键语义区域相关性计算方法能够有效提高人体行为识别的准确率。结论 实验结果表明,本文提出的人体行为识别方法能够有效利用视频中人体行为的时空信息,显著提高人体行为识别准确率。 相似文献
11.
提出了一种基于特征级融合的运动人体行为识别方法。应用背景差分法和阴影消除技术获得运动人体区域和人体轮廓;采用R变换提取人体区域特征,采用小波描述子提取人体轮廓特征;然后将这两种具有一定互补性的特征采用K-L变换进行融合,得到一个分类能力更强的特征;最后,在传统支持向量机的基础上,结合模糊聚类技术和决策树构建多级二叉树分类器,从而实现行为多类分类。该方法在Weizmann行为数据库上进行了实验,实验结果表明所提出的识别方法具有较高的识别性能。 相似文献
12.
13.
针对视频中人体动作行为的空间复杂性和时间复杂性问题,提出一种融合图卷积神经网络和长短期记忆神经网络的双流网络方法2 S-LSGCN.从人体关节点组成的骨架关节图中,提取动作的空间与时间特征;利用GCN提取骨架关节点间潜在的空间信息,LSTM提取人体动作前后之间的时间序列特征作为补充,分别将两个网络的预测输出进行晚融合,... 相似文献
14.
目的 提出了一个基于流形学习的动作识别框架,用来识别深度图像序列中的人体行为。方法 从Kinect设备获得的深度信息中评估出人体的关节点信息,并用相对关节点位置差作为人体特征表达。在训练阶段,利用LE(Lalpacian eigenmaps)流形学习对高维空间下的训练集进行降维,得到低维隐空间下的运动模型。在识别阶段,用最近邻差值方法将测试序列映射到低维流形空间中去,然后进行匹配计算。在匹配过程中,通过使用改进的Hausdorff距离对低维空间下测试序列和训练运动集的吻合度和相似度进行度量。结果 用Kinect设备捕获的数据进行了实验,取得了良好的效果;同时也在MSR Action3D数据库上进行了测试,结果表明在训练样本较多情况下,本文方法识别效果优于以往方法。结论 实验结果表明本文方法适用于基于深度图像序列的人体动作识别。 相似文献
15.
提出一种基于超兴趣点的动作特征描述方法,用于人体动作的识别。兴趣点特征描述了人体动作时变化显著的局部点信息,但其最大的缺陷在于离散的兴趣点间缺乏时间和空间上的结构关联。提出根据兴趣点间的时空距离,使用广度优先搜索邻居算法,将时空距离相近的兴趣点聚合成超兴趣点,该结构作为一个整体,反映人肢体在一定时空范围内的动作变化特征。与现有的基于局部兴趣点的动作识别算法相比,本文算法增加了兴趣点间的整体时空结构关系,提高了特征的区分度。实验采用两层分类方法对超兴趣点特征分类,实验结果表明该算法具有较好的识别率。 相似文献
16.
17.
本文提出了一个基于流形学习的动作识别框架,用来识别深度图像序列中的人体行为。本文从Kinect设备获得的深度信息中评估出人体的关节点信息,并用相对关节点位置差作为人体特征表达。在训练阶段,本文利用Lapacian eigenmaps(LE)流形学习对高维空间下的训练集进行降维,得到低维隐空间下的运动模型。在识别阶段,本文用最近邻差值方法将测试序列映射到低维流形空间中去,然后进行匹配计算。在匹配过程中,通过使用改进的Hausdorff距离对低维空间下测试序列和训练运动集的吻合度和相似度进行度量。本文用Kinect设备捕获的数据进行了实验,取得了良好的效果;同时本文也在MSR Action3D数据库上进行了测试,结果表明在训练样本较多情况下,本文识别效果优于以往方法。实验结果表明本文所提的方法适用于基于深度图像序列的人体动作识别。 相似文献
18.
目的 基于3维骨架的行为识别研究在计算机视觉领域一直是非常活跃的主题,在监控、视频游戏、机器人、人机交互、医疗保健等领域已取得了非常多的成果。现今的行为识别算法大多选择固定关节点作为坐标中心,导致动作识别率较低,为解决动作行为识别中识别精度低的问题,提出一种自适应骨骼中心的人体行为识别的算法。方法 该算法首先从骨骼数据集中获取三维骨架序列,并对其进行预处理,得到动作的原始坐标矩阵;再根据原始坐标矩阵提取特征,依据特征值的变化自适应地选择坐标中心,重新对原始坐标矩阵进行归一化;最后通过动态时间规划方法对动作坐标矩阵进行降噪处理,借助傅里叶时间金字塔表示的方法减少动作坐标矩阵时间错位和噪声问题,再使用支持向量机对动作坐标矩阵进行分类。论文使用国际上通用的数据集UTKinect-Action和MSRAction3D对算法进行验证。结果 结果表明,在UTKinect-Action数据集上,该算法的行为识别率比HO3D J2算法高4.28%,比CRF算法高3.48%。在MSRAction3D数据集上,该算法比HOJ3D算法高9.57%,比Profile HMM算法高2.07%,比Eigenjoints算法高6.17%。结论 本文针对现今行为识别算法的识别率低问题,探究出问题的原因是采用了固定关节坐标中心,提出了自适应骨骼中心的行为识别算法。经仿真验证,该算法能有效提高人体行为识别的精度。 相似文献
19.
基于级联结构的人体动作识别方法 总被引:1,自引:0,他引:1
基于视频的人体动作识别是近年来计算机视觉领域备受关注且十分具有挑战性的研究方向,可以应用于人的行为分析,视频监控和人机交互等方面。本文提出了一种基于级联结构的人体动作识别方法:针对Dollar时空兴趣点检测器易受图像噪声、摄像机运动与缩放等因素影响产生伪兴趣点的问题,提出了一种基于轨迹差异度的兴趣点筛选方法,有效避免了引入背景中的伪兴趣点,提高了人体运动特征提取的准确度;采用规范切与mRMR准则对词袋模型生成的特征向量进行自动特征选择,同时建立一个用于分类的级联结构,在识别各类不同动作时选择不同的特征子集,使得分类器使用的特征更具区分性。在KTH人体运动测试集上实验,验证了文中方法能提高动作识别的准确度。 相似文献
20.
移动设备上难以获取大量标签样本,而训练不足导致分类模型在人体动作识别上表现欠佳.针对这一问题,提出一种基于多视图半监督集成学习的人体动作识别算法.首先,利用两种内置传感器收集的数据构建两个特征视图,将两个视图和两种基分类器进行组合构建协同学习框架;然后,根据多分类任务重新定义置信度,结合主动学习思想在迭代过程中控制预测... 相似文献