首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
风电功率预测对于风电场和电网的安全可靠运行具有重要意义。以某风力发电机为研究对象,根据该风机历史天气信息和风电功率数据,使用遗传算法改进BP神经网络,构建复合型神经网络的风电功率预测系统。运用MATLAB软件对算法进行编程与仿真,仿真结果表明,单一的BP神经网络预测系统波动性较高,精度不足,而复合型的神经网络算法有效地解决了这一问题,改进后的预测系统精度较高、稳定性较强,满足工业生产需求。  相似文献   

2.
风具有易变性、随机性等特点,风电并网之后,可能引起运行和可靠性的问题。如果能够提前对风电功率进行准确的预测,则有利于及时调整调度计划,保证电能质量,减少系统备用容量,获得更多的经济效益和社会效益。本文介绍了这一领域的研究现状,采用了BP人工神经网络的方法,利用风速的历史数据,建立模型进行风电功率预测,仿真结果表明该方案的有效性。  相似文献   

3.
介绍了风电功率预测的背景,对风电功率预测进行了理论分析,分析了BP神经网络的原理及基于BP神经网络的风电功率预测流程和预测结果误差的评价指标。以Matlab软件的神经网络工具箱为仿真平台,搭建BP神经网络,进行了功率预测仿真,预测结果均方根误差分别为6.97%、200.59%。两组仿真对比结果表明,基于BP神经网络的风电功率预测在短期预测中是可行的.  相似文献   

4.
风力发电的不可控性,给电网带来了很多问题,所以当前迫切需要一种高精度的风力发电预测系统.对此,提出了一种结合量子遗传算法和BP神经网络的预测方法,通过量子遗传算法优化BP神经网络的权值和阈值.最后通过MATLAB试验仿真,验证了该方法可有效提高风功率的准确性.  相似文献   

5.
为提高风电场输出功率预测精度,提出一种动态基于神经网络的功率预测方法。根据实际运行的风电场相关风速、相关风向和风电功率的历史数据,建立了基于 Elman神经元网络的短期风电功率预测模型。运用多层 Elman 神经网络模型对西北某风电场实际 1 h 和 24 h 的风电输出功率预测,与BP神经网络模型对比,经仿真分析证明前者具有预测精度高的特点,三隐含层 Elman 神经网络模型预测效果最佳。这表明利用 Elman 回归神经网络建模对风电功率进行预测是可行的,能有效提高功率预测精度。  相似文献   

6.
为满足风电运行、维护及调度管理需要,提高风电功率预测精度,提出了一种基于ARIMA与BP神经网络的组合风电功率预测方法。介绍了时间序列法与BP神经网络法的基本原理,采用了新的结合方式,综合考虑了风速、风向、以及风电场当地的物理限制,建立了预测模型。通过对某风电场的实测数据进行分析预测及对比,结果表明,该方法能有效提高风电功率预测精度,具有较好的实际应用价值。  相似文献   

7.
为了提高风电功率的预测精度,研究了一种基于粒子滤波(PF)与径向基函数(RBF)神经网络相结合的风电功率预测方法。使用PF算法对历史风速数据进行滤波处理,将处理后的风速数据结合风向、温度的历史数据,归一化后构成风电功率预测模型的新的输入数据;利用处理后的新的输入数据和输出数据,建立PF-RBF神经网络预测模型,预测风电场的输出功率。仿真结果表明,使用该预测模型进行风电功率预测,预测精度有一定的提高,连续120 h功率预测的平均绝对百分误差达到8.04%,均方根误差达到10.67%。  相似文献   

8.
基于原子稀疏分解和BP神经网络的风电功率爬坡事件预测   总被引:6,自引:1,他引:6  
超短期风电功率爬坡事件越来越影响风电机组在电网中的运行。当前国内对爬坡事件的定义并不明确,缺少相应的预测方法。阐述了风电功率爬坡事件的物理含义,提出了一种基于原子稀疏分解和反向传播神经网络(BPNN)的组合预测方法,分别建立了原子分量自预测模型、残差分量预测模型和组合预测模型。以实际风电场数据进行验证,对不同预测方法和不同时间空间实测数据进行了较全面的分析,结果表明该方法可以提高预测精度,并能降低绝对平均误差和均方根误差计算值的统计区间。  相似文献   

9.
厉卫娜  苏小林 《电力学报》2011,26(6):458-461,465
为了提高风电功率预测精度,降低电网调度的难度,通过对影响风电功率预测的诸多因素如风速、风向、风电功率、温度等进行分析,进而对风电功率的预测方法进行研究和探讨,提出了基于多变量的小波-神经网络模型的短期风电功率预测方法。通过单变量和多变量的风电功率预测的比较研究,证明BP神经网络预测与小波-神经网络预测这两种方法的预测精度不同。而且,对于同一种方法,输入变量的多少也对预测精度产生影响。通过最终的比较研究得出,采用基于多变量输入的小波-神经网络开展风电功率预测可提高预测精度。  相似文献   

10.
基于小波—BP神经网络的短期风电功率预测方法   总被引:13,自引:0,他引:13  
建立风电功率预测系统并提高其预测精度是大规模开发风电的关键技术之一。基于数值天气预报,建立了反向传播(BP)神经网络风电功率预测模型,并采用某风电场实际数据分析了影响该模型预测精度的因素。针对原始风速及功率序列日特性不明显、BP神经网络不能完全映射其特性的缺陷,提出了一种基于小波—BP神经网络的预测模型。该模型利用小波...  相似文献   

11.
基于动态神经网络的风电场输出功率预测   总被引:5,自引:0,他引:5  
随着风电的大规模发展,准确预测风电场输出功率对于风电场的选址、大规模并网及运行具有重要的作用。文中提出了局部反馈时延神经网络和全局反馈时延神经网络2种动态神经网络预测模型,以适应风功率的时间序列特性,并与静态神经网络预测模型进行了比较。以国内北方某风电场的风功率预测为例,结合气象预报数据进行提前24h的风电输出功率预测,仿真结果表明,动态神经网络在预测具有时间序列特性的风功率时效果优于静态神经网络。  相似文献   

12.
介绍了基于AdaBoost的多神经网络集成预测方法。集成方法的预测结果优于其他方法的预测结果,这一点在理论上和经验上已经得到证明。AdaBoost是适用于时间序列预测的集成方法。基于AdaBoost算法,采用多个BP神经网络训练随机生成的风速样本,再由多个训练结果生成最终的风速预测值。用该方法预测的误差低于用单一BP神经网络进行的预测,其分析和仿真结果表明了其优越性。  相似文献   

13.
基于人工神经网络的风电功率短期预测系统   总被引:19,自引:4,他引:19  
风电场输出功率预测对接入大量风电的电力系统运行有重要意义。该文综述国内外风电功率预测技术的研究现状、基本原理及预测方法;设计风电功率预测系统的框架,建立基于人工神经网络的风电功率预测系统,该系统即将应用于吉林电网调度中心。该系统以数值天气预报为基础,具有良好的人机界面,实现了与能量管理系统(energy management system,EMS)的无缝连接。对测试数据的预测结果表明,该预测系统能够可靠工作,预测结果的均方根误差在15%左右。最后,该文对风电功率预测系统的经济效益进行估算。  相似文献   

14.
基于小波-神经网络的风电功率短期预测   总被引:1,自引:0,他引:1  
根据风速、风电功率变化特点,有效地预测风电功率,可降低电网调度的难度,利用小波多分辨分析法将风速序列信号分解到不同尺度上以反映不同变化频率的风速信号,分解后的风速信号经多层前向神经网络BP(Back Propagation)预测出其对应的风电功率,通过将基于小波-神经网络模型的预测结果与基于BP神经网络模型的预测结果进行比较研究,发现基于小波-神经网络的预测精度更高,效果更好,且预测精度与预测时间长短有关。  相似文献   

15.
黄辰  吴峻青 《华东电力》2014,42(7):1408-1410
风力发电近年来已进入规模化发展阶段。由于风能的随机性和间歇性特征,风电场输出功率往往具有波动性,因此其功率预测对接入风电的电力系统的安全稳定运行及保证电能质量有着重要意义。基于人工神经网络模型,对风电场输出功率进行24小时短期预测,并分析该预测模型的可靠性和精确性,提出改进方法和进一步研究方向。  相似文献   

16.
对风力发电进行有效的预测,则可降低电网调度的难度。根据从风电场获得的相关风速、温度、风向、风电功率等数据,建立基于BP神经网络的短期风电功率预测模型,预测提前1,2,4,24h的风电功率。对所得预测结果进行比较,从而判断各种短期预测模型的优劣。从对比的结果可知,神经网络模型预测不超过24h的风电功率时具有一定的可靠性。  相似文献   

17.
风电的随机性和波动性给电力系统调度运行带来了一定的困难,以我国首个千万kW级风电基地甘肃酒泉风电基地为例,研究了基于神经网络的酒泉风电基地超短期风电功率预测方法,并对风速和风电功率实时数据进行了分析处理。在此基础上,基于神经网络算法和贝叶斯规则进行了超短期预测建模过程分析。最后,通过预测结果对预测模型进行了验证分析,验证结果表明预测模型合理、预测精度高,该预测结果可以为调度运行人员提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号