首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 691 毫秒
1.
本文研究了在铁(Ⅱ)-EDTA体系中快速还原铀(Ⅵ)的条件和测定矿石中微量铀的方法。在含有EDTA的微酸性介质中,铁(Ⅱ)可将铀(Ⅵ)迅速地还原至四价。四价铀离子可在4M盐酸中用偶氮胂Ⅲ显色后测定。铀(Ⅳ)-偶氮胂Ⅲ络合物在660nm呈最大吸收,克分子吸光系数为1.02×10~5,当log(I_0/I)=0.001时,桑德尔(Sandell)灵敏度为0.00233μgU/cm~2,铀浓度为0~2μg/ml,符合朗伯特-比尔定律。钍、铜、钛、锆和大量稀土干扰测定。用742强碱性阴离子交换树脂从硫酸介质中吸附铀,可使微克量铀与大量共存离子分离。方法用于测定矿样中n×10~(-4)%铀时,标准偏差不大于0.3×10~(-4)%,精密度在±7%以内。  相似文献   

2.
不对称荚醚萃取铀(Ⅵ)和稀土(Ⅲ)的研究   总被引:3,自引:0,他引:3  
研究了不对称荚醚N,N'-二甲基二己基-3-氧戊二酰胺(DMDHGA)、N,N’-二甲基二辛基-3-氧戊二酰胺(DMDOGA)、N,N’-二甲基二月桂基-3-氧戊二酰胺(DMDLGA)和N,N’-二甲基二己基-3,6-二氧辛二酰胺(DMDHOA)在HNO3介质中对铀(Ⅵ)、稀土(Ⅲ)和锶(Ⅱ)的萃取行为。结果表明,随着酰胺官能团氮原子上烷基链增大,不对称荚醚萃取性能下降,与铀(Ⅵ)形成的萃合物在烷烃稀释剂中的溶解性增加。分别使用正十二烷、异辛烷和煤油作稀释剂时,DMDOGA萃取铀(Ⅵ)均出现第三相,而DMDHGA,DMDHOA和DMDLGA萃取时均不出现第三相。DMDHGA萃取铀(Ⅵ)和锶(Ⅱ)的分配比及铀(Ⅵ)与锶(Ⅱ)之间的分离系数均比对称荚醚N,N,N’,N'-四丁基-3-氧戊二酰胺(TBGA)的大,有利于铀(Ⅵ)与锶(Ⅱ)的分离。DMDLGA与铀(Ⅵ)生成1:1型萃合物;而DMDLGA和DMDOGA与混合稀土(Ⅲ)(组成以氧化物计为27%La2O3,51%CeO2,6%Pr6O11,16%Nd2O3)生成1:2型萃合物。  相似文献   

3.
本文提出用试剂双(水杨醛)四甲基乙二亚胺测定二氧铀(Ⅵ)。方法是:在pH6的水溶液中,用上述试剂对铀进行络合,接着用氯仿萃取并在Hypersil ODS(3μm)柱上进行HPLC测定。络合物用三元混合物甲醇-乙腈-水(40:30:30,v/v/v)洗脱并在260nm处用紫外吸收法检测。氧钒(Ⅳ)、Fe(Ⅲ)、Cu(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)和Pd(Ⅱ)已被完全分离,不会干扰铀的测定。测定了线性校正范围和检测限。该法已用于矿样中的铀以及铜、铁和镍的测定。  相似文献   

4.
本文研究了偶氮氯膦Ⅲ-正丁醇萃取微量铀(Ⅵ)的条件以及络合物在正丁醇中的组成和不稳定常数。用8-羟基喹啉-乙酸乙酯(或氯仿)萃取分离干扰元素(在4%碳酸铵溶液中),拟订了废水中微量铀(Ⅵ)的萃取光度法。方法灵敏度高,对含铀(Ⅵ)量为0.02微克/毫升以上的废水测定获得满意的结果。  相似文献   

5.
偶氮胂Ⅲ与大量的金属离子有着高灵敏的颜色反应。萨文提出的方法把此性质用于铀的测定,其中包括将铀(Ⅵ)预先还原为铀(Ⅳ)以及一个使用 EDTA 和密苯胺的萃取——分光光度法程序。我们观察了铀(Ⅵ)与偶氮胂Ⅲ之间在 pH5.5左右的颜色反应,如果二乙撑三胺五乙酸(DTPA)在此作为掩蔽剂而不抑制这个反应的话,则可得到一个选择性好并足具灵敏度的测铀方法。本文阐述了该法在一些岩石样品上的应用。  相似文献   

6.
本文提出了一种测定铀的灵敏的分光光度法。从1.5—3.0M盐酸溶液中,将铀(Ⅳ)—氯膦偶氮Ⅲ络合物萃入3-甲基-1-丁醇。在673nm处有最大的吸收,在每10ml有机相中,含铀0—15μg遵守比耳定律,其克分子吸收系数为12.1×10~4升/克分子·厘米。在氟离子、硫酸根离子和磷酸根离子存在下,仍能测定铀。影响铀(Ⅳ)的还原和铀(Ⅳ)稳定性的硝酸根离子和几个元素(Cr,Cu,Fe)有干扰。  相似文献   

7.
在吸附十二烷基硫酸铵改进的Separon SGXC18填充玻璃柱(3mm×150mm)上,用离子对液相色谱法使U(Ⅵ)与Th(Ⅳ)、Zr(Ⅳ)、Al(Ⅲ)、Fe(Ⅲ)、镧系元素和其他离子分离后,可以有效地测定0.3—1.0mol/L范围的U(Ⅵ)。用异箱洗脱法或pH或浓度梯度洗脱法,采用2-羟基-2-甲基丙酸铵或柠檬酸铵溶液,可以在分析交换柱上直接从酸性水溶液预富集微量铀并与Th、Zr、Al,Fe、镧系元素和其他元素分离,富集因子约为100,回收率为98±8%。利用pH2.7的0.1mol/L甲酸盐缓冲液中后柱与25μmol/L偶氮砷Ⅲ的衍生作用来检测和定量。  相似文献   

8.
与铀(Ⅵ)比较起来,对铀(Ⅳ)的萃取性质研究得较少。Schmid等人研究了用TBP从硝酸溶液中萃取铀(Ⅳ),用二乙基己基磷酸(DEHPA)从高氯酸溶液中萃取铀(Ⅳ)。他们分离出了铀(Ⅳ)的DEHPA络合物,同时描述了这种络合物。Koch和Schwind用三辛酰硝酸铵从硝酸盐介质中萃取  相似文献   

9.
磷酸盐岩用硫酸分解后的溶液中的铀,在完全氧化Fe(Ⅱ)后,可用二-(2-乙基已基)磷酸和TBP萃取,然后在65℃用含Fe(Ⅱ)的8.6M磷酸溶液反萃取。最后用偶氮胂Ⅲ测定铀。  相似文献   

10.
一、前言 1,9-双(1′-苯基-3′-甲基-5′-氧代吡唑-4′-基)壬二酮-[1,9] (简称H_2A)为新近合成的一种双-β二酮螯合剂,它较HPMBP类试剂多一倍螯合功能团,不但能与钍(Ⅳ)形成较稳定的可萃络合物,而且还能与某些中性萃取剂产生协萃作用。本文以氯仿为溶剂研究了它对钍(Ⅳ)的单独萃取及它与三辛基氧膦(TOPO)协同萃取钍的作用,测得了萃合物的组成为ThA_2·TOPO。求得单独萃取和协同萃取反应的平衡常数分别为β_(20)=1.03×10~8和β_(21)=1.18×10~9。  相似文献   

11.
为了测定矿石中痕量铀,提出了一个萃取分光光度测定方法。此法是用三辛基氧膦甲苯溶液萃取铀,并在有机相中不经反萃取藉助NN-二甲基甲酰胺用乙二醛双(2-羟基缩苯胺)(GBH)或1-(2-吡啶偶氮)-2-萘酚(PAN)显色。用GBH作显色剂时最大吸光度出现在波长600nm处,克分子吸光系数为1.48(±0.01)×10~4 1mol~~(-1)cm~(-1),用PAN作显色剂时,最大吸光度出现在波长555nm处,克分子吸光系数为2.61(±0.02)×10~41mol~(-1)cm~(-1)。用GBH作显色剂,波长选在600 nm,铀(Ⅵ)含量在0.6—10.5μgml~(-1)(对应的样品中铀量为20—350μg)范围内符合比尔定律。用PAN作显色剂,波长选在555nm,在铀(Ⅵ)含量0.3—6.0μgml~(-1)(对应的样品中铀量为10—200μg)范围内符合比尔定律。  相似文献   

12.
本文介绍了用偶氮胂-K测定大量铀中微量镎的分光光度法。首先用铁(Ⅱ)将镎还原为镎(Ⅳ),在2N HNO_3的条件下吸附于三月桂胺(TLA)色层柱上,而与样品中大量铀(铀:镎高达10~6:1)、微量钚和钍以及不诱钢腐蚀产物分离,然后用0.15N HNO_3洗脱镎(Ⅳ),并在665毫微米处测量镎(Ⅳ)同偶氮胂-K生成的蓝绿色络合物的消光值。此络合物的克分子消光系数为77000。在0.2—1.0微克镎(Ⅳ)/2毫升的范围内服从比尔定律。方法的精密度为±7%。在3小时内,一人操作可以完成6个样品的测定。  相似文献   

13.
本文拟定了用示波极谱仪测定二氧化铀中氧/铀比的方法。采用1.4M H_3PO_4 1.6MH_2SO_4为底液,测定范围溶解后立刻测定为10—100微克/毫升及氧化后总铀测定为600—1200微克/毫升。样品用磷酸溶解,以硫酸稀释防止产生磷酸铀(Ⅳ)胶状沉淀;取出一份溶液直接极谱测定铀(Ⅵ),再取出另一份溶液用高锰酸钾将四价铀氧化成六价,用亚硫酸钠破坏过量的高锰酸钾,测定总铀量,以差减法求出铀(Ⅳ),实验的结果与库博塔(H.Kubota)计算法和伯德(R.M.Burd)图解法一致。方法的精密度为±2%,微量的铁(Ⅲ)、镍(Ⅱ)、硼(Ⅳ)、硅(Ⅳ)、铜(Ⅱ)、铝(Ⅲ)、钨(Ⅵ)、锰(Ⅱ)、钼(Ⅵ)、钒(Ⅴ)等杂质元素对铀的测定无影响,方法简便、快速,不需分离,适宜于工厂例行分析。  相似文献   

14.
对乙酰基偶氮胂-铀(Ⅳ)的分光光度法测定矿石中微量铀   总被引:1,自引:0,他引:1  
一、前言微量铀的光度分析,多采用偶氮胂Ⅲ、BrPADAP作为显色剂,具有灵敏度高,选择性好等优点。本实验用二乙三胺五乙酸(DTPA)作络合剂,将铀(VI)在铁(II)-DTPA-抗坏血酸体系还原成铀(IV),随之用对乙酰基偶氮胂显色。在1 M盐酸介质中,络合物至少可稳定4小时,且锆的允许量远高于偶氮胂Ⅲ法。但钍、轻希土和钪仍呈正干扰。  相似文献   

15.
文献提出了激光萤光法测定微量铀(Ⅵ),该法是基于铀酰络合物萤光和背景萤光的衰减时间的不同。以铀酰同磷酸形成络合物的形式测定铀时检测限(P=0.997)可达5×10~(-10)g/ml。同时磷酸盐络合物萤光的衰减时间必须超过背景萤光的衰减时间至少2倍。文献指出,当分析溶液中Cl~-和Br~-的浓度不超过10~(-7)g/ml、并且不熄灭扩散恒定的铀(Ⅵ)萤光时,这个条件能实现。当测定许多无机离子(包括Cl~-和Br~-在内)的含量超过10~(-7)g/ml的天然水(海水、地下水和其他)中的微量铀(Ⅵ)时,当C_(Cl~-)=1.9×10~(-2)g/ml时铀的检测限增加到5×10~(-5)g/ml,当C_(Br~-)=6.5×10~(-5)g/ml时铀的检测限增加到  相似文献   

16.
铀铬蓝G络合物和十六烷基三甲基氯化铵在水溶液中形成的三元络合物pH,值在4.0—6.2间波长在648 nm处具有最大吸光度。在0.2-2mg/l范围中的铀遵循比尔定律,mol吸光系数达1.32×10~5l·mol~(-1)·cm~(-1)。Sandell灵敏度为1.8×10~(-3) ug铀/cm~2。当使用钙-1,2-环己烷-二胺四乙酸作掩蔽剂时仅铝和铍有干扰。  相似文献   

17.
本文叙述一种分离微量钍的泡沫浮选法。在季胺盐氯化十四烷基二甲基苄基铵(作为阳离子表面活性剂)存在下,钍-偶氮胂Ⅲ络合物从0.3M盐酸溶液中,浓集在浮渣内。研究了偶氮胂Ⅲ和氯化十四烷基二甲基苄基铵浓度,酸度和外来离子的影响。钍用偶氮胂Ⅲ分光光度法测定。在进行系统的浮选分离时,也研究了选定的裂变产物核素的性状。  相似文献   

18.
铀(Ⅵ)的测定是用磷酸三丁酯/异丁基甲基酮和三辛基氧磷/苯的萃取分光光度分析法进行的。在氯乙酸和氯乙酸钠缓冲介质中,用偶氮胂Ⅲ作金属显色剂。对本方法的许多阳离子和阴离子的干扰作了研究,也研究了消除钚的重大干扰。该方法的适应性用一系列国际第二级标准铀矿石的对照分析,和其它已由单独的化学分析方法分析过的低品位铀矿石的对照分析说明,此方法可以推广。三辛基氧磷-苯-偶氮  相似文献   

19.
本文提出了一个用氯苯萃取铀-苯甲酸盐-孔雀绿络合物测定铀的灵敏的分光光度法。其最大吸光度在635毫微米处,克分子吸光系数为8.3×10~4升·克分子~(-1)厘米~(-1)。从欠酸的硝酸铝溶液中,用甲基异丁基酮萃取铀,使之与干扰离子分离。分取萃取液,用氯苯稀释,并与含有孔雀绿(MG)的苯甲酸盐缓冲溶液一起震荡。本法已应用于合成浸出液中铀的测定,萃合物的组成可能是[UO_2(C_6H_5COO)_3~-][MG~+]。  相似文献   

20.
二苯并-18-冠-6从盐酸溶液中萃取铀(Ⅳ)和铀(Ⅵ)   总被引:5,自引:0,他引:5  
二苯并-18-冠-6-硝基苯,从高浓度的盐酸或氯化物溶液中,能有效地萃取铀(Ⅳ)和铀(Ⅵ)。不同碱金属阳离子对萃取的影响,符合冠醚与阳离子络合作用的顺序:K~ >Na~ >Li~ ,少量钾离子的引入能显著提高对铀的萃取效果。通过对有机相中铀性质的研究和固体萃合物的成份分析,指出在被萃取的离子对中铀(Ⅳ)和铀(Ⅵ)是以氯络阴离子[UCl_6]~(2-)、[UO_2Cl_4)~(2-)的形式存在。采用饱和萃取法和等克分子系列法,确定了在盐酸体系中萃合物的组成为:H_2UCl_6·2DBC、H_2UO_2Cl_4·2DBC。当有与冠醚络合作用强的阳离子存在时,萃合物中的氢将被该阳离子所取代。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号