首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CD80(B7-1) and CD86(B7-2) co-stimulatory molecules have been reported to activate Th1/Th2 development pathways differentially. It is well known that Langerhans cells (LC), potent antigen-presenting dendritic cells in the epidermis, express several co-stimulatory molecules and that this expression is modulated by several cytokines. Based on the recently reported effect of interferon (IFN)-gamma and interleukin (IL-)-10 on the expression of CD80 and CD86 by LC, we examined the effects of these cytokines on the expression of CD54 (intercellular adhesion molecule-1) and CD40 in addition to CD80 and CD86 on LC, and correlated the expression of each co-stimulatory molecule with antigen presentation for a Th1 clone by cultured LC (cLC) treated with these cytokines. LC cultured for 72 h significantly up-regulated MHC class II antigen expression and all the co-stimulatory molecules were examined. As previously reported, IL-10 or IFN-gamma inhibited the up-regulation of CD80 expression. Granulocyte/macrophage-colony-stimulating factor (GM-CSF) partially restored the suppression of CD80 expression induced by IFN-gamma on cultured LC, while it had virtually no effect on the inhibition induced by IL-10. Antigen presentation for the myoglobin-specific syngeneic Th1 clone by cLC, which were pre-incubated with these cytokines, correlated well with their CD80 expression. In addition, among the antibodies for CD80, CD86, CD28 or CD40, the suppression of the Th1 clone stimulation by LC was found to occur only with anti-CD80 and anti-CD28 antibodies. Finally, we studied the effects of IFN-gamma and IL-10 on GM-CSF production by epidermal keratinocytes (KC). We could show that only IFN-gamma, but not IL-10, suppressed GM-CSF production by KC. These findings suggest that both IFN-gamma and IL-10 suppress antigen presentation by LC for Th1 cells by suppressing their CD80 expression. The inhibitory effect of IFN-gamma on CD80 expression on LC appears to be partially mediated through the suppression of GM-CSF production by KC.  相似文献   

2.
3.
We compared costimulatory signals provided by human endothelial cells (ECs) to those provided by conventional bone marrow-derived APCs, i.e., peripheral blood-adherent mononuclear cells (PBAMCs), by measuring their effects on cytokine production by naive or memory CD4+ T cells stimulated by PHA. In these assays, ECs effectively costimulate secretion of IL-2, IFN-gamma, and IL-4 from both naive and memory CD4+ T cells, quantified by ELISA or intracellular cytokine staining. ECs, which lack B7 molecules, use predominantly leukocyte-function associated Ag 3 (LFA-3) to provide costimulation. ECs are comparable to or better than PBAMCs, which use both the LFA-3 and B7 molecules, at costimulating IL-2 and IL-4 production. ECs are less effective than PBAMCs at costimulating IFN-gamma production by naive T cells. ECs do not secrete IL-12, and addition of exogenous IL-12 enables ECs to costimulate IFN-gamma at a level comparable to that observed with PBAMCs. ECs do not promote differentiation of naive T cells to Th1-like cells, whereas PBAMCs do. Again, addition of exogenous IL-12 enables ECs to do so. Transfection of ECs to express B7-1 or B7-2 is less effective than IL-12 supplementation for restoring these responses. These experiments suggest that a deficiency in costimulation due to lack of B7 molecule expression does not fully explain the inability of ECs to activate resting naive CD4+ T cells.  相似文献   

4.
A 43-year-old healthy man developed transmural myocardial infarction shortly after ingesting sumatriptan succinate 100 mg for migraine. Coronary arteriography revealed only minor irregularities in the left anterior descending artery. Oral sumatriptan should be used with caution in any patient with vascular risk factors and avoided in those with coronary artery disease or vasospasm.  相似文献   

5.
The transverse tubule system of the cardiomyocyte remains undeformed despite the extreme forces it undergoes during the contraction-relaxation cycle, but the morphological basis for its stability remains unclear. Therefore, we have investigated the architecture and subcellular protein scaffold of the cardiac T-tubules and compared it with that of the costameres and of the free sarcolemma. Tissue samples from normal rat and monkey hearts, and left ventricular tissue from normal and cardiomyopathic human hearts obtained at transplantation surgery were investigated using immunocytochemistry and confocal microscopy and by electron microscopy. In addition, we used a re-differentiation model of isolated, cultured adult rat cardiomyocytes. The cell membrane of the cardiac T-tubules was found to contain the cell-matrix focal adhesion molecules (FAMs) vinculin, talin, the alpha5beta1 integrin and the membrane-associated proteins (MAPs) dystrophin and spectrin. FAMs and MAPs were localized in the T-tubular membrane in a similar pattern: in longitudinally oriented myocytes as transverse punctate lines at the Z-level; in transversally cut myocytes a radial tubular network was found to extend throughout the interior of the cell. Immunolabeling for basement membrane components including collagen IV, fibronectin and laminin showed a colocalization with FAMs and MAPs parallel to the transverse T-tubules. The costameres of the sarcolemma showed a protein composition resembling that of the T-tubules but the intervening segments of free sarcolemma showed absence of FAMs and presence of MAPs. For the first time, we demonstrate the existence and protein composition of the T-tubular scaffold in the human heart. Furthermore, we show that cardiomyocytes from human failing hearts have less abundant but more dilated T-tubules than do experimental animals. These results indicate that the cardiac T-tubular system contains a subcellular scaffold closely resembling that of the costameres. It consists of FAMs, MAPs and basal lamina proteins that confer structural integrity to the cardiac T-tubular membrane during contraction/relaxation cycles.  相似文献   

6.
We have previously found that thymic B cells, particularly thymic CD5+ B cells, show low responsiveness to the usual B cell stimulants such as lipopolysaccharide or anti-IgM plus interleukin (IL)-4, although they proliferate and produce antibodies after direct interaction with major histocompatibility complex class II-restricted T blasts. These findings raise the possibility that a CD40-CD40 ligand (L) interaction is involved in the activation of thymic B cells. In the present study, we therefore examine this possibility using CD40L-transfected Chinese hamster ovary (CHO) cells or anti-CD40 monoclonal antibody (mAb). When B cells in the spleen and peritoneal cavity were stimulated, they proliferated and produced immunoglobulin (Ig) in the presence of CD40L-CHO cells or anti-CD40 mAb alone. However, another signal delivered by IL-10 in addition to CD40L-CHO cells or anti-CD40 mAb was found to be necessary for thymic B cells to proliferate and secrete Ig. Other interleukins acting on B cells, such as IL-4, IL-5, and IL-6, had no effect on the activation of thymic B cells, which thus have unique characteristics not found in peripheral B cells. This report discusses the physiological significance of IL-10- and CD40-driven signals in the activation of thymic B cells.  相似文献   

7.
In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the formation of tight monolayers of polarized intestinal epithelial cells. To analyze IL-8 secretion as a function of cell differentiation, T84 monolayers were infected from the apical or basolateral side at different stages of differentiation. Both virulent (plasmid-carrying) and nonvirulent (plasmid-cured) Y. enterocolitica strains invaded nondifferentiated T84 cells from the apical side. Yersinia invasion into T84 cells was followed by secretion of IL-8. After polarized differentiation of T84 cells Y. enterocolitica was no longer able to invade from the apical side or to induce IL-8 secretion by T84 cells. However, Y. enterocolitica invaded and induced IL-8 secretion by polarized T84 cells after infection from the basolateral side. Basolateral invasion required the presence of the Yersinia invasion locus, inv, suggesting beta1 integrin-mediated cell invasion. After basolateral infection, Yersinia-induced IL-8 secretion was not strictly dependent on cell invasion. Thus, although the plasmid-carrying Y. enterocolitica strain did not significantly invade T84 cells, it induced significant IL-8 secretion. Taken together, these data show that Yersinia-triggered IL-8 secretion by intestinal epithelial cells depends on cell differentiation and might be induced by invasion as well as by basolateral adhesion, suggesting that invasion is not essential for triggering IL-8 production. Whether IL-8 secretion is involved in the pathogenesis of Yersinia-induced abscess formation in Peyer's patch tissue remains to be shown.  相似文献   

8.
Recent data indicate a major role for IL-10 in suppressing immune and inflammatory reactions. To date, expression of human IL-10 has been attributed primarily to helper T lymphocytes, activated monocytes, and neoplastic B cells, and was often found to be associated with IL-6 expression. In this study we sought to determine whether non-hematopoietic human tumor cell lines produce IL-10 and, if so, what is the relationship between IL-10 and IL-6. Using ELISA, we determined IL-10 and IL-6 levels in culture supernatants of 48 cell lines established from carcinomas of the kidney, colon, breast and pancreas, malignant melanomas and neuroblastomas. IL-6 protein was secreted by 28 of the tumor cell lines; IL-10 was measurable in 15 cell lines. IL-6 secretion was maximal and most frequent in renal-cancer cell lines, while IL-10 production was found to be highest and most common among cell lines derived from colon carcinomas. IL-10 in conditioned medium of one of the colon carcinoma cell lines (CCL222) was bio-active, as demonstrated in the mouse MC/9 mast-cell-line assay and in human mixed-lymphocyte reactions. In both assays, IL-10 bio-activity was neutralized by an anti-IL-10 monoclonal antibody. Expression of IL-6 and IL-10 was confirmed by RNA analysis using message amplification by PCR and sequencing of amplified cDNA. LPS, IL-1 alpha, and TNF-alpha strongly enhanced the release of IL-6 by RCC cells, but only marginally affected IL-10 production in colon-carcinoma cells. IL-10 secretion by colon-carcinoma cells was moderately stimulated by IFN-gamma and IL-4. Dexamethasone suppressed the release of IL-6, but had no inhibitory effect on IL-10 secretion. Our results demonstrate that tumor cell lines established from certain types of human carcinomas are capable of expressing and releasing IL-6 and/or IL-10, suggesting a role of these cytokines in solid-tumor development and anti-tumor immunity.  相似文献   

9.
Previous studies have shown that the intravenous administration of yohimbine, an alpha 2 antagonist, increases norepinephrine turnover and has related anxiogenic effects in humans. We herein report that yohimbine also increases plasma neuropeptide Y (NPY) in healthy human subjects. This finding is consistent with previous reports in animals, but contrasts with a previously reported study in humans. NPY is a 36 amino acid peptide neurotransmitter located in sympathetic and nonsympathetic nerve fibers, as well as in brain structures such as the locus coeruleus, where it is colocalized with norepinephrine. NPY has been shown to inhibit locus coeruleus neuronal firing, decrease norepinephrine release, and increase postsynaptic noradrenergic signal transduction. When administered centrally, NPY also has anxiolytic properties. This study therefore suggests that yohimbine challenge may be useful in assessing NPY and noradrenergic system interactions in neuropsychiatric disorders such as panic disorder or post traumatic stress disorder in which noradrenergic system dysfunction has been observed.  相似文献   

10.
Recent analyses of antimycobacterial T cells clones from a small number of individuals indicate that mycobacteria preferentially induce Th cells that produce high levels of IFN-gamma and no or little IL-4 in Mycobacterium leprae-resistant tuberculoid leprosy (TT) patients and healthy subjects, whereas in one study M. leprae-induced Ts clones from polar lepromatous leprosy (LL) patients showed a reciprocal cytokine secretion profile and mediated their suppressive activity via the release of high levels of IL-4. We have evaluated these findings in peripheral blood T cells from a larger panel of TT and LL patients as well as healthy individuals. Mycobacterium-reactive T cell lines generated from the PBMC of these individuals were tested for cytokine secretion and proliferative capacity in response to M. leprae, Mycobacterium tuberculosis, and various individual mycobacterial Ag. The lepromatous pole of the leprosy spectrum was additionally investigated by analyzing the cytokine-secretion profile of M. leprae-induced (suppressor) T cell clones as well as primary ex vivo PBMC. All T cell lines from healthy individuals and TT patients responding to M. leprae, M. tuberculosis, or individual Ag, produced high levels of IFN-gamma and TNF-alpha but little or no IL-4 and IL-6. At the lepromatous pole, T cell lines failed to proliferate upon stimulation with M. leprae but in some cases produced significant levels of IFN-gamma. No IL-4 or IL-6 secretion was observed in response to M. leprae. These lines displayed strong proliferation and Th1-like cytokine production upon stimulation with M. tuberculosis. Similarly, stimulation of primary PBMC from LL patients with M. leprae or M. tuberculosis resulted in the release of IFN-gamma but no detectable IL-4 production. Control tetanus toxoid-reactive T cell lines from the same individuals instead produced large amounts of IL-4 and low levels of IFN-gamma. The analysis of M. leprae-induced T cell clones, including those with known suppressive activity, revealed that all lepromatous T cell clones produced large amounts of IFN-gamma. Most of these clones released no or little IL-4, but some clones produced higher levels of IL-4 in addition to IFN-gamma. Most clones tested produced IL-10 as well. The suppressor activity of suppressor T cell clones could not be inhibited by a neutralizing anti-IL-4 antibody and only in one case by neutralizing anti-IL-10 antibody. Anti-IL-4 and anti-IL-10 could not overcome the M. leprae-specific unresponsiveness observed in primary PBMC from LL patients.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Ethanol caused a concentration-dependent loss of PC12 cells over a 24 h interval, accompanied by an increase in intracellular calcium. The specific alpha7 nicotinic receptor partial agonist DMXB attenuated both of these ethanol-induced actions at a concentration (3 microM) found previously to protect against apoptotic and necrotic cell loss. The alpha7 nicotinic receptor antagonist methylylaconitine blocked the neuroprotective action of DMXB when applied with but not 30 min after the agonist. These results indicate that activation of alpha7 nicotinic receptors may be therapeutically useful in preventing ethanol-neurotoxicity.  相似文献   

12.
The expression of the proinflammatory cytokine leukemia inhibitory factor (LIF) has been reported in the cartilage and synovium of rheumatoid arthritis (RA) patients. Here, we show that high levels of LIF were constitutively produced by cultures of synovium pieces. Low levels of LIF were produced spontaneously by isolated synoviocytes, but interleukin (IL)-1 beta caused a fourfold enhancement of this secretion. The anti-inflammatory cytokine IL-4 reduced the production of LIF by synovium pieces by 75%, as observed earlier with IL-6, IL-1 beta and tumor necrosis factor (TNF)-alpha. IL-4 had a direct effect since it inhibited LIF production by unstimulated and IL-1 beta- or TNF-alpha-stimulated synoviocytes. Conversely, IL-4 enhanced the production of IL-6, which shares with LIF biological activities and receptor components. The inhibitory effect of IL-4 was dose dependent and was reversed using a blocking anti-IL-4 receptor antibody. Similar inhibitory action of IL-4 on LIF production was observed on synovium pieces from patients with osteoarthritis and on normal synoviocytes. IL-10, another anti-inflammatory cytokine acting on monocytes, had no effect on LIF production by either synovium pieces or isolated synoviocytes. Thus, the production of LIF by synovium tissue was inhibited by IL-4 through both a direct effect on synoviocytes and an indirect effect by inhibition of the production of LIF-inducing cytokines.  相似文献   

13.
Previous studies in the laboratory have shown that the pro-inflammatory cytokine tumor necrosis factor (TNF)-alpha plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA). The mechanisms involved in regulating monocyte/macrophage cytokine production are not yet fully understood, but are thought to involve both soluble factors and cell/cell contact with other cell types. We and others have previously demonstrated that T cells activated through the T cell receptor/CD3 complex induce monocyte TNF-alpha production by contact-mediated signals. In this report, we investigated further whether T cells activated by cytokines in the absence of T cell receptor stimulation also regulate monocyte cytokine production. T cells were activated in an antigen-independent manner using the cytokines interleukin (IL)-15 or IL-2 alone, or in combination with IL-6 and TNF-alpha. Subsequently, T cells were fixed and incubated with monocytes. Fixed, cytokine-stimulated T cells induced monocytes to secrete TNF-alpha in a dose-dependent manner, but did not induce secretion of IL-10, a potent endogenous down-regulator of TNF-alpha and other pro-inflammatory cytokines. Stimulation of monocyte TNF-alpha was markedly inhibited when T cells were physically separated from monocytes within the tissue culture well, confirming that T cell contact is necessary. T cell acquisition of monocyte-activating capacity was shown to be dependent on the period of cytokine stimulation, with T cells activated for 8 days more effective than T cells activated for shorter periods. Addition of interferon-gamma or granulocyte/macrophage colony-stimulating factor to the T cell/monocyte cultures enhanced T cell induction of monocyte TNF-alpha by threefold and ninefold, respectively. The results from this model of cognate interaction suggest that cytokine-stimulated T cells, interacting with macrophages in the rheumatoid synovial membrane, may contribute to the continuous excessive production of TNF-alpha observed in the RA joint, and to the imbalance of pro-inflammatory cytokines over anti-inflammatory cytokines.  相似文献   

14.
Previously, it has been described that the ability of murine Th1 cells to proliferate in response to exogenous interleukin (IL)-2 is blocked when these cells are exposed to immobilized anti-CD3 antibodies. In the present study we examined whether simultaneous triggering of the T cell antigen CD28 can prevent the induction of unresponsiveness to IL-2 in Th1 cells. We report that costimulation of Th1 cells with anti-CD28 monoclonal antibodies (mAb) did not overcome unresponsiveness to IL-2 induced by various amounts of immobilized anti-CD3 antibodies. However, stimulation with anti-CD28 mAb strongly augmented IL-2 and interferon-gamma production in anti-CD3-exposed Th1 cells. Thus, despite the fact that anti-CD28 mAb is a potent costimulus for lymphokine production, signaling through CD28 does not seem to be sufficient to trigger proliferation in Th1 cells activated via the T cell receptor. These data suggest the existence of at least three signals to trigger Th1 cell activation. The first is mediated by ligation of the T cell receptor. One cosignal, delivered by the CD28 molecule, leads to IL-2 production. A third, still undefined, signal is required for proliferation in response to IL-2.  相似文献   

15.
Interleukin-12 (IL-12) induces differentiation of T helper 1 (Th1) cells, primarily through its ability to prime T cells for high interferon-gamma (IFN-gamma) production. We now report that the presence of IL-12 during the first several days of in vitro clonal expansion in limiting dilution cultures of polyclonally stimulated human peripheral blood CD4+ and CD8+ T cells also induces stable priming for high IL-10 production. This effect was demonstrated with T cells from both healthy donors and HIV+ patients. Priming for IL-4 production, which requires IL-4, was maximum in cultures containing both IL-12 and IL-4. IL-4 modestly inhibited the IL-12-induced priming for IFN-gamma, but almost completely suppressed the priming for IL-10 production. A proportion of the clones generated from memory CD45RO+ cells, but not those generated from naive CD45RO- CD4+ T cells, produced some combinations of IFN-gamma, IL-10, and IL-4 even in the absence of IL-12 and IL-4, suggesting in vivo cytokine priming; virtually all CD4+ clones generated from either CD45RO(-) or (+) cells, however, produced high levels of both IFN-gamma and IL-10 when IL-12 was present during expansion. These results indicate that each Th1-type (IFN-gamma) and Th2-type (IL-4 and IL-10) cytokine gene is independently regulated in human T cells and that the dichotomy between T cells with the cytokine production pattern of Th1 and Th2 cells is not due to a direct differentiation-inducing effect of immunoregulatory cytokines, but rather to secondary selective mechanisms. Particular combinations of cytokines induce a predominant generation of T cell clones with anomalous patterns of cytokine production (e.g., IFN-gamma and IL-4 or IFN-gamma and IL-10) that can also be found in a proportion of fresh peripheral blood T cells with "memory" phenotype or clones generated from them and that may identify novel Th subsets with immunoregulatory functions.  相似文献   

16.
Tumor growth induces phenotypic and functional changes among splenic T cells and macrophages (M phi) that contribute to the immunosuppression observed in tumor-bearing hosts (TBH). These changes partly arise through alterations in immune cell production of and responsiveness to cytokines. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important T cell- and M phi-derived cytokine that is produced during normal host immunogenic challenge, but it's involvement during cancer is poorly defined. In contrast, interleukin-10 (IL-10) is an inhibitory cytokine that is produced by immune cells as a deactivation factor. IL-10 can disrupt GM-CSF synthesis and may be associated with tumor-induced changes in cytokine synthesis. We determined if tumor growth alters T-cell and M phi synthesis of and responsiveness to GM-CSF, and if these alterations occur because tumor growth heightens immune cell sensitivity to IL-10. Tumor growth significantly decreased T-cell synthesis of GM-CSF during activation by concanavalin A, and TBH T cells were more susceptible to GM-CSF synthesis inhibition by IL-10 than their normal host (NH) counterparts. This suppression was observed using both unseparated splenic lymphocyte preparations and purified CD4+ and CD8+ T cells. Similarly, TBH M phi (both splenic and peritoneal) produced less GM-CSF than NH M phi during activation by lipopolysaccharide. Tumor growth also altered major histocompatibility complex (MHC) class II- M phi GM-CSF synthesis. TBH M phi were more susceptible to GM-CSF synthesis inhibition by IL-10 than their NH counterparts. Although TBH T cells demonstrate less proliferation than NH T cells during activation, tumor growth did not compromise T-cell responsiveness to GM-CSF. However, tumor growth did increase TBH T-cell susceptibility to inhibition of proliferation by IL-10. Tumor growth suppressed M phi responsiveness to GM-CSF, and IL-10 further decreased M phi responsiveness to GM-CSF. Collectively, these results suggest that T cell and M phi production of and responsiveness to GM-CSF is disrupted during tumor growth, and that TBH T cells and M phi are more susceptible to the suppressor activity of IL-10 than their NH counterparts.  相似文献   

17.
The humoral immune response of neonates to T cell-independent type 2 (TI-2) Ags is markedly defective. We previously demonstrated that multivalent membrane Ig cross-linking, using dextran-conjugated anti-Ig Abs (anti-Ig-dextran), is an in vitro model for membrane Ig-dependent TI-2 induction of Ig secretion. In this work, we demonstrate that highly purified neonatal B cells are intrinsically defective in IgM secretion in response to anti-Ig-dextran and cytokines in vitro, as well as other modes of B cell activation, relative to adult B cells. However, costimulation of anti-Ig-dextran-activated neonatal B cells with either CD40-ligand, a recombinant bacterial lipoprotein, or LPS restores the IgM secretory response of neonatal B cells to adult levels. Analysis of Ig isotype secretion indicates that neonatal B cells have an enhanced capacity to secrete IgE and IgA relative to other Ig isotypes. These data suggest that neonatal B cells are competent to secrete Ig in response to TI-2 Ags if adequate costimuli are provided, and thus may have particular relevance for the design of vaccine strategies in the immunodeficient host. The data also suggest that neonatal B cells are programmed to secrete relatively enhanced amounts of IgE and IgA, which may be relevant for antimicrobial resistance at mucosal surfaces.  相似文献   

18.
BACKGROUND: Methods to quantitate the effects of immunosuppressive drugs on immune reactivity might be helpful for monitoring immunosuppressive treatment. Cyclosporine (CsA) inhibits the induction of cytokine synthesis in T cells, and measurement of interleukin (IL)-2 production might constitute a parameter of this drug's effect. METHODS: We determined the percentages of CD4+ and CD8+ lymphocytes producing IL-2 upon stimulation by phorbol myristate acetate and calcium ionophore in whole blood culture, using immunostaining of intracytoplasmatic and membrane markers, followed by multiparameter flow cytometry. A total of 38 clinically stable transplant patients on various immunosuppressive protocols were studied. RESULTS: The percentage of CD4+ T cells producing IL-2 was strongly reduced in patients compared with healthy controls (23% [range, 3-68%] vs. 59.0% [range, 41-70%]; P=0.000035). The percentage of CD4+ T cells producing IL-2 was negatively correlated with the CsA level (Rc=-0.0821, P=0.00002297) but not with prednisolone or azathioprine doses. Fewer CD8+ T cells produced IL-2 in transplant patients compared with controls, but the difference failed to reach statistical significance. The percentage of CD8+ T cells capable of producing IL-2 was inversely correlated to CsA levels (Rc=-0.0375, P=0.0011). CONCLUSIONS: These data suggest that the functional effects of CsA in transplant recipients can be quantitatively determined and that the capacity of CD4+ T cells to produce IL-2 upon stimulation constitutes a functional parameter of CsA effects on the immune system. Prospective studies are required to determine whether this method is useful for clinical monitoring.  相似文献   

19.
C-C chemokines play an important role in recruitment of T lymphocytes to inflammatory sites. T lymphocytes secrete chemokines, but the activation requirements for chemokine production by T cells are uncertain. We studied the regulation of C-C chemokine production by CD28 costimulatory signals by murine T lymphocytes. Splenocytes from BALB/c mice cultured with anti-CD3 mAb expressed macrophage-inflammatory protein (MIP)-1alpha mRNA and secreted MIP-1alpha, which was inhibited by anti-B7-1 plus anti-B7-2 mAbs. MIP-1alpha production by Ag-stimulated T cells from DO.11.10 TCR transgenic mice was augmented by anti-CD28 mAb and increased compared with DO.11.10/CD28(-/-) cells. When T cell costimulation was provided by IL-2, MIP-1alpha was not enhanced. Studies with IL-2, IL-4, STAT4, and STAT6 knock-out mice suggested that chemokine production is controlled by pathways different from those regulating T cell differentiation. Thus, CD28 costimulation may amplify an immune response by stimulating T cell survival, proliferation, and production of chemokines that recruit T cells to inflammatory sites.  相似文献   

20.
We have previously demonstrated that antigen-specific T cell help can rescue mature Ig transgenic (Tg) hen egg lysozyme (HEL)-specific B cells from tolerance induction upon transfer into soluble HEL-expressing Tg hosts. Here we extend these findings by showing that T cell help could also rescue both immature and mature self-reactive B cells from rapid deletion in response to high-avidity membrane-bound HEL. Moreover, although short-lived anergic peripheral B cells that had matured in the presence of soluble self antigen could not be rescued by provision of T cell help, a proportion of immature anergic IgM+ IgD- CD23- B cells from the bone marrow of the same donors survived and proliferated when given help following transfer to a soluble or membrane HEL-expressing host. In other words, T cell help must be available relatively soon after the antigen signal to prevent induction of tolerance. Consistent with this interpretation, the stronger stimulus provided by membrane-bound antigen, which deletes immature B cells before they leave the bone marrow, did not afford an opportunity for T cell help to rescue tolerant immature bone marrow-derived B cells upon transfer in vivo. Nevertheless, these B cells were capable of responding to T cell help in vitro, which speaks against an immutable susceptibility of immature B cells to tolerance induction. Taken together, these data indicate that the strength of the antigen signal and availability of T cell help are the primary determinants of the fate of both immature and mature B cells, consistent with the model proposed by Bretscher and Cohn more than 25 years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号