共查询到17条相似文献,搜索用时 62 毫秒
1.
研究了SIMA法制备的7A04合金在半固态触变模锻工艺中的组织演化规律.结果表明:在半固态重熔加热过程中,随着加热温度的升高和保温时间的延长,晶粒逐渐球化和长大,且加热温度对重熔加热组织的影响比保温时间大;当将具有此特征的坯料进行半固态触变模锻后,其获得的触变模锻件的显微组织与半固态重熔组织密切相关.当模锻温度达到600℃以上时,模锻件的显微组织变化不大,仍是均匀的近球形的显微组织,而且模锻件各区域的合金成分基本一致.揭示了采用半固态触变模锻工艺可获得形状复杂的高质量制件. 相似文献
2.
采用2000 kN压力机,对半固态7A04合金进行了触变模锻实验.结果表明:半固态触变模锻成形可以获得组织致密、轮廓清晰、充型完整的成形件;半固态触变模锻件的微观组织和力学性能与坯料的制备方法有关,采用SIMA法所获得的成形件的微观组织为晶粒细小、均匀的再结晶组织,因此其组织致密,在拉伸过程中部分晶粒发生塑性变形,断口中多处出现撕裂棱,其力学性能明显好于挤压态坯料;在加热温度为600℃、保温时间为10 min时SIMA坯料模锻件的伸长率和抗拉强度最高,接近于热挤压态棒料的力学性能,优于同等条件下挤压态合金的半固态模锻成形件,其抗拉强度和伸长率分别提高11.8%和78.5%. 相似文献
3.
获得具有触变特性的均匀的、近球形的显微组织是半固态触变成形工艺的基础和关键。以挤压态7A04合金SIMA法生成触变组织为例.研究变形程度对其半固态触变组织的影响。结果表明:在加热前的变形程度对显微组织的影响很大,随着变形程度的增加,晶粒尺寸减小,晶粒形状越趋于球形;当变形程度超过0.3时,晶粒尺寸及其球形化速度逐渐减慢并趋于稳定值。此外,经过冷变形后,晶粒内及晶粒间的偏析减小,晶界易被低熔点液相浸润.更易获得均匀的、近球形的触变组织。 相似文献
4.
采用SCR(shearing-cooling-roll)技术制备了A2017半固态合金, 对合金液在不同温度下进行浇注, 且对辊-靴型腔中合金组织的演化过程进行了跟踪, 分析了SCR过程中凝固形核的热力学条件以及层流剪切特性.结果表明: 随着合金液浇注温度的降低, 坯料内部组织从粗大的枝晶或菊花晶转化为细小的近球形晶.合金液首先在轧辊和靴子表面结晶形核, 在液流冲击及剪切的作用下, 晶核从型壁上脱落进入残余液相形成游离晶; 随着辊-靴型腔内合金固相率的增加, 游离晶在以枝晶方式生长过程中受到层流剪切作用, 二次枝晶臂断裂破碎形成自由晶; 自由晶在层流剪切作用下进一步发生碰撞和摩擦, 最后逐渐趋于球形或椭球形. 相似文献
5.
通过新SIMA法制备Mg-Al-Zn合金半固态坯的触变挤压和触变模锻试验以及借助金相显微镜、拉伸试验机等分析手段对Mg-Al-Zn合金半固态坯的制备及触变成形进行了研究.研究结果表明,新SIMA法中的等径道角挤压能使Mg-Al-Zn合金获得良好的应变诱导效果,即铸坯微观组织被大大细化,平均晶粒尺寸达到20μm,材料力学性能大幅度提高;该坯料在560℃保温20min制备的半固态坯料的固相晶粒细小,球化程度高,组织均匀,平均晶粒尺寸为25μm.通过触变挤压和触变模锻试验证明,新SIMA法制备的Mg-Al-Zn合金半固态坯料所触变成形的零件的力学性能很高.其中触变挤压的卫星角框零件的屈服强度、抗拉强度和伸长率分别为213.1MPa、312.6MPa和15.2%.触变模锻的托弹板零件的屈服强度、抗拉强度和伸长率分别为218.6MPa、320.9MPa和14.8%. 相似文献
6.
通过应变诱导熔化激活法制备半固态AM60B镁合金,并研究其组织演变。分别采用往复挤压镦粗(CEC法)和传统压缩预成形铸态AM60B镁合金,并在半固态区间部分重熔和触变成形。结果表明,CEC态镁合金的粗晶组织消失,出现细小晶粒组织,但是压缩态合金的粗晶和再结晶晶粒共存。在局部重熔过程中,CEC态合金获得理想的细晶组织,完全球化的晶粒被液相均匀包裹。在压缩态合金中,多边形晶粒在一定程度上球化,但是之前不规则的形状仍然明显存在。CEC加上二次重熔触变成形的AM60B镁合金,其力学性能优于压缩态加上二次重熔触变成形的镁合金的。 相似文献
7.
新SIMA法制备AZ80合金半固态坯料的组织与性能(英文) 总被引:1,自引:0,他引:1
借助新应变诱导熔化激活方法制备AZ80合金半固态坯料。在新应变诱导熔化激活方法中,首先利用等通道角挤压对铸态AZ80镁合金进行预变形,然后将预变形的AZ80镁合金进行半固态等温处理。结果表明:利用等通道角挤压能够使AZ80合金获得很好的应变诱导效果。这是由于等通道角挤压能够使AZ80合金微观组织细化,力学性能提高。新应变诱导熔化激活方法能够制备晶粒细小且球化程度高的半固态坯料。利用新应变诱导熔化激活方法制备的半固态坯料触变锻造的零件具有高的力学性能,其屈服强度达到216.9MPa,抗拉强度达到312.4MPa,伸长率达到26%。触变成形实验结果也证明,新应变诱导熔化激活方法是一种非常理想的AZ80半固态坯料制备方法。 相似文献
8.
原位反应TiC颗粒对液相线铸造法制备半固态铝合金组织的影响 总被引:1,自引:0,他引:1
采用原位反应液相线铸造法制备7075+X%TiC(体积分数X=0、0.8、1.0、2.0)半固态铝合金坯料,选择590℃对其进行二次加热实验,保温时间分别为5、20、30min,并与液相线铸造7075铝舍金的相同条件下的组织相比.探索原位TiC颗粒对液相线铸造铝舍金组织的影响。结果表明,当原位TiC颗粒达到2%时,舍金铸态组织基本变成等轴晶;二次加热后平均晶粒尺寸随着保温时间的延长具有长大现象,但是随着原位TiC颗粒的含量增加,长大幅度变小,颗粒抑制晶粒长大程度增强。 相似文献
9.
1 INTRODUCTIONComparedwithconventionalcastingandforgingtechnologies ,semi solidmetalformingisnowbecom inganewgenerationmetalformingprocessduetoitseasinesstorealizenearnetshapeforming ,prolongedmoldlifeaswellasreductionsofshrinkage ,porosityandsegregation… 相似文献
10.
11.
Based on SIMA, the AI-Si alloy semi-solid billets were successfully fabricated by means of strain inducement and isothermal treatment for A1Si9Mg poured in the range of near-liquidus. Through orthogonal test, the effects of combination action of near-liquidus casting, strain inducement and isothermal treatment on the morphology of primary α-Al phase of AISi9Mg close to eutectic point were investigated, and the optimal match relation between the processing parameters of solidification, deformation parameters of strain inducement, processing parameters of isothermal treatment and microstructure parameters of semi-solid alloy was established. The results indicate that compared with the single near-liquidus casting or SIMA, the microstructure of primary a-Al phase in A1Si9Mg alloy prepared by compound fabrication process is more homogeneous, with more globular and finer particles, which has average grain size of 40-50 Brn and shape factor of greater than 0.75. After holding at 605 ℃ for 30-40 min under a certain cooling rate, increased deformation volume in SIMA benefits the refinement of the grain and the improvement of the morphology for primary phase. 相似文献
12.
研究了应变诱发熔化激活法 (SIMA)制备半固态LY11合金过程中的变形温度、变形速度、等温温度和保温时间等工艺参数对LY11合金组织演变的影响。研究结果表明 ,要获得均匀、细小的非枝晶组织 ,必须合理地匹配SIMA工艺参数 相似文献
13.
Haitao Jiang Xiaoli Li Aiming Xiong Miaoquan Li 《Journal of Materials Engineering and Performance》2003,12(3):249-253
For semi-solid metal forming, it is essential to fabricate the semi-solid materials with spheroidal microstructure. Among
several fabrication techniques of the semi-solid materials, (strain-induced melt activation (SIMA) is an ideal candidate with
the advantages of simplicity and low equipment costs. In this paper, the microstructure evolution of LY11 alloy (approximately
corresponding to ASTM 2017) was investigated in the SIMA process, which had two essential stages: deformation and isothermal
heat treatment. The deformation stage was conducted using a CSS-1100C material testing machine and the isothermal heat treatment
stage was performed in a resistance furnace. Different levels of deformation temperatures, ram velocities, isothermal temperatures,
and holding times were used in this investigation. The microstructure of LY11 alloy was observed by a NEOPHOT-1 optical microscope.
The results indicated that the processing parameters must be selected properly to obtain the fine, uniform and spheroidal
microstructure by SIMA. The deformation-recrystallization mechanism for microstructure evolution in SIMA process was supported
by experimental evidence. 相似文献
14.
Microstructural evolution of aluminum alloy 7B04 thick plate by various thermal treatments 总被引:1,自引:0,他引:1
The microstructure of an AA 7B04 alloy in the form of plate was investigated using differential scanning calorimetry (DSC) and TEM analysis technologies. Tensile properties and electrical conductivity of AA 7B04 under various heat treatment conditions were also presented. The results reveal that peak-aged microstructure contains GP zones and η' precipitates predominantly. After retrogressing and reaging(RRA), the η' and η precipitates disperse in the alloy matrix, and the η precipitates distribute coarsely and sparsely, decorating the grain boundaries, together with precipitate free zones(PFZs) around them. It is also shown that selecting of suitable heat treatments can provide optimal precipitates in matrix and at grain boundaries, which gives rise to a combination of high strength and stress corrosion cracking(SCC) resistance in such materials. 相似文献
15.
Structure evolution of AZ61 magnesium alloy in SIMA process 总被引:1,自引:0,他引:1
The effect of prior compressive deformation, isothermal temperature and holding time on the structure of AZ61 magnesium alloy fabricated by strain-induced melt activation(SIMA) processing was investigated. The specimens were subjected under deformation ratios of 0%, 22% and 40% and various heat treatment time and temperature regions. The results indicate that the ideal technological parameters of semi-solid AZ61 alloy produced with non-dendrites are recommended as 22% (prior compressive deformation), 595℃ (heat treatment temperature) and 40 min(time). The as-cast AZ61 magnesium alloy isn‘t fit for semi-solid forming. 相似文献
16.
AlSi7Mg合金坯料在半固态区的结构演化对变形的影响 总被引:2,自引:0,他引:2
论述了AlSi7Mg合金坯料结构演化过程听固相颗粒尺寸及分布、颗粒形貌、颗粒团聚化程度等影响因素,研究了在半固态状态下合金的结构演化对AlSi7Mg合金变形行为的影响。结果表明,在半固态状态下,亚共晶AlSi7Mg合金坯料的触变形行为密切依赖于固相的结构和试样在压缩变形前的固相结合演化。初始非枝晶结构或枝晶演化成球状化 很低的应力下变形。在完全球状化条件下,固相颗粒尺寸对应力水平没有明显影响。 相似文献