首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the analysis of three open reading frames of Salmonella typhimurium LT2 which we identified as rfaF, the structural gene for ADP-heptose:LPS heptosyltransferase II; rfaD, the structural gene for ADP-L-glycero-D-manno-heptose-6-epimerase; and part of kbl, the structural gene for 2-amino-3-ketobutyrate CoA ligase. A plasmid carrying rfaF complements an rfaF mutant of S. typhimurium; rfaD and kbl are homologous to and in the same location as the equivalent genes in Escherichia coli K-12. The RfaF (heptosyl transferase II) protein shares regions of amino acid homology with RfaC (heptosyltransferase I), RfaQ (postulated to be heptosyltransferase III), and KdtA (ketodeoxyoctonate transferase), suggesting that these regions function in heptose binding. E. coli contains a block of DNA of about 1,200 bp between kbl and rfaD which is missing from S. typhimurium. This DNA includes yibB, which is an open reading frame of unknown function, and two promoters upstream of rfaD (P3, a heat-shock promoter, and P2). Both S. typhimurium and E. coli rfaD genes share a normal consensus promoter (P1). We postulate that the yibB segment is an insertion into the line leading to E. coli from the common ancestor of the two genera, though it could be a deletion from the line leading to S. typhimurium. The G+C content of the rfaLKZYJI genes of both S. typhimurium LT2 and E. coli K-12 is about 35%, much lower than the average of enteric bacteria; if this low G+C content is due to lateral transfer from a source of low G+C content, it must have occurred prior to evolutionary divergence of the two genera.  相似文献   

2.
We employed the Rauscher murine leukemia virus (RMuLV) as a murine retrovirus model of AIDS, to test biological response modifiers (BRM) and antiviral agents for potential therapeutic activity against the human immunodeficiency virus (HIV). We examined the relationship between the augmentation of natural killer (NK) cell activity and antiviral efficacy of a series of BRM, most of which are known inducers of interferon, in this model. Poly [I,C]-LC, MVE-2, and CL 246,738, but not Ampligen, soluble glucan, or 7-thia-8-oxoguanosine, consistently produced antiviral activity. In addition, the combination of suboptimal doses of oral 3'-azido-3'-deoxythymidine (AZT) (in drinking water) and poly [I,C]-LC produced a synergistic antiviral effect. With all the BRM tested, a consistent pattern emerged, namely that antiviral activity always correlated with the augmentation of splenic NK cell activity in infected animals. For instance, poly [I,C]-LC boosted NK activity much more in infected mice treated therapeutically (treatment initiated after infection) than prophylactically (treatment initiated before infection), and it had greater antiviral activity therapeutically than prophylactically. For the BRM tested, antiviral activity did not occur without augmentation of NK activity in infected mice. In contrast, augmentation of NK activity in uninfected mice bore no relationship to antiviral activity. Furthermore, elimination of NK cells by treating mice with anti-asialo GM1 abolished the antiviral activity of poly [I,C]-LC. Although splenic NK activity was ablated by anti-asialo GM1, serum interferon levels were not affected by this treatment. These results point to a causal connection between the augmentation of NK cell activity and the antiviral efficacy of these BRM in this murine AIDS model. NK cells thus appear to play a key role in resistance to this retrovirus, as has been suggested for HIV.  相似文献   

3.
The fhuA genes of Salmonella paratyphi B, Salmonella typhimurium, and Pantoea agglomerans were sequenced and compared with the known fhuA sequence of Escherichia coli. The highly similar FhuA proteins displayed the largest difference in the predicted gating loop, which in E. coli controls the permeability of the FhuA channel and serves as the principal binding site for the phages T1, T5, and phi80. All the FhuA proteins contained the region in the gating loops required in E. coli for ferrichrome and albomycin transport. The three subdomains required for phage binding were contained in the gating loop of S. paratyphi B which is infected by the E. coli phages, whereas two of the subdomains were deleted in S. typhimurium and P. agglomerans which are resistant to the E. coli phages. Small deletions in a surface loop adjacent to the gating loop, residues 236 to 243 and 236 to 248, inactivated E. coli FhuA with regard to transport of ferrichrome and albomycin, but sensitivity to T1 and T5 was fully retained and sensitivity to phi80 and colicin M was reduced 10-fold. Full-size FhuA hybrid proteins of S. paratyphi B and S. typhimurium displayed S. paratyphi B FhuA activity when the hybrids contained two-thirds of either the N- or the C-terminal portions of S. paratyphi B and displayed S. typhimurium FhuA activity to phage ES18 when the hybrid contained two-thirds of the N-terminal region of the S. typhimurium FhuA. The central segment of the S. paratyphi B FhuA flanked on both sides by S. typhimurium FhuA regions conferred full sensitivity only to phage T5. The data support the essential role of the gating loop for the transport of ferrichrome and albomycin, identified an additional loop for ferrichrome and albomycin uptake, and suggest that several segments and their proper conformation, determined by the entire FhuA protein, contribute to the multiple FhuA activities.  相似文献   

4.
The role of microbial lipopolysaccharides (LPS) in the aetiopathogenesis of ankylosing spondylitis (AS) is a matter of continuing debate. In this study, class-specific IgG, IgA and IgM antibodies against Klebsiella pneumoniae, Escherichia coli, Salmonella typhimurium and Salmonella enteritidis LPS were measured by enzyme-linked immunosorbent assay (ELISA) in 100 AS patients, 50 rheumatoid arthritis (RA) patients and 50 healthy control subjects. The AS patients had significantly elevated levels of IgG and IgA antibodies against K. pneumoniae LPS (P < 0.001) and IgA antibodies against E. coli LPS (P < 0.05) compared to healthy controls. There were no significant elevations of antibody levels against S. typhimurium and S. enteritidis in the three study groups. In addition, there was a correlation between IgG and IgA anti-K. pneumoniae LPS antibody levels and the acute-phase reactant C-reactive protein (P < 0.001).  相似文献   

5.
We have previously described a form of xenograft rejection, mediated by natural killer (NK) cells, occurring in pig-to-primate organ transplants beyond the period of antibody-mediated hyperacute rejection. In this study, two distinct NK activation pathways were identified as mechanisms of pig aortic endotheliual cell (PAEC) lysis by human NK cells. Using an antibody-dependent cellular cytotoxicity (ADCC) assay, a progressive increase in human NK lysis of PAEC was observed following incubation with human IgG at increasing serum titer. In the absence of IgG, a second mechanism of PAEC lysis by human NK cells was observed following activation with IL-2. IL-2 activation of human NK cells increased lysis of PAEC by over 3-fold compared with ADCC. These results indicate that IL-2 activation of human NK cells induces significantly higher levels of lytic activity than does conventional ADCC involving IgG and FcRIII. We next investigated the role of MHC class I molecules in the regulation of NK lysis following IL-2 activation. PAEC expression of SLA class I molecules was increased by up to 75% by treatment with human TNFa. Following treatment with TNFa at 1 u/ml, IL-2 activated human NK lysis of PAEC was inhibited at every effector:target (E:T) ratio tested. Maximal effect occurred at an E:T ratio of 10:1, with TNFa inhibiting specific lysis by 59% (p < 0.01). Incubation with an anti-SLA class I Mab, but not IgG isotype control, abrogated the protective effects of TNFa on NK lysis of PAEC, suggesting direct inhibitory effects of SLA class I molecules on human NK function. To investigate whether human MHC class I molecules might have similar effects on human NK lysis of PAEC, further experiments were performed using a soluble peptide derived from the alpha-helical region of HLA-B7. Incubation with the HLA-B7 derived peptide significantly reduced the IL-2 activated NK lytic activity against PAEC in a dose-dependent fashion. Maximal effect occurred at a concentration of 10 mg/ml, where an 8-fold reduction in IL-2 augmented NK lysis was observed (p < 0.01). These results suggest that IL-2 activated human NK lysis of porcine xenografts may be inhibited by strategies which increase PAEC expression of SLA class I molecules, introduce HLA class I genes into PAEC, or use soluble HLA class I peptides.  相似文献   

6.
We are interested in identifying the pathways which are responsible for triggering the conditioned enhancement of natural killer (NK) cell activity. Earlier studies have suggested that central opioid(s) are involved in eliciting the expression of the conditioned NK cell activity. The purpose of this study was to identify the central opioid peptides that allow the central nervous system (CNS) to communicate with the immune system. Mediators that activate the efferent pathway of communication between the CNS and immune system was examined by injection of the mediator via the cisterna magna (CM). Conditioning was used as a tool to show that the bi-directional communication between the CNS and the immune system does take place. We found that beta-endorphin but not dynorphin could stimulate NK cell activity, when beta-endorphin or dynorphin was injected into the CM. In addition, when anti-beta-endorphin or anti-dynorphin antibody was injected into the conditioned animals via CM the conditioned response was blocked by anti-beta-endorphin but not by anti-dynorphin antibody. These observations suggest that beta-endorphin appears to be one of the signals that is induced in the brain at the CS recall step of the conditioned response to trigger the elevation of NK cell activity.  相似文献   

7.
In the current study, we investigated whether the naive, poly I:C or interleukin-2 (IL-2)-induced natural killer (NK)/lymphokine-activated killer (LAK) cells use perforin and/or Fas ligand (FasL) to mediated cytotoxicity. We correlated these findings with the ability of mice to reject syngeneic Fas+ and Fas- tumor cells either spontaneously or after IL-2 treatment. The spontaneous NK-cell-mediated cytotoxicity was primarily perforin based, whereas the poly I:C and IL-2-induced NK/LAK activity was both FasL and perforin dependent. L1210 Fas+ tumor targets were more sensitive than L1210 Fas- targets to poly I:C and IL-2-induced cytotoxicity in wild-type, gld/gld, and perforin knockout mice. When L1210 Fas+ and Fas- tumor cells were injected subcutaneously (sc) or intraperitoneally into syngeneic mice, Fas- tumor cells caused mortality earlier than Fas+ tumor cells. Also, approximately 20% of the mice injected sc with L1210 Fas+ tumor cells survived the challenge(>60 days), whereas all mice injected similarly with L1210 Fas- tumor cells died. When immunotherapy using IL-2 (10,000 U, three times/d for a week, followed by once/d for an additional week) was attempted in mice injected sc with tumor cells, IL-2 treatment was very effective against mice bearing L1210 Fas+ (40% survival) but not L1210 Fas- (0% survival) tumors. These data correlated with the finding that the LAK cells from IL-2-injected mice caused increased cytotoxicity against L1210 Fas+ when compared with L1210 Fas- targets. Also, L1210 Fas+ tumor-bearing mice showed increased tumor-specific cytotoxic T lymphocyte (CTL) activity when compared with those bearing L1210 Fas- tumor cells. Together our studies show for the first time that expression of Fas on tumor targets makes them more immunogenic as well as susceptible to CTL- and IL-2-induced LAK activity. The Fas+ tumor cells are also more responsive to immunotherapy with IL-2.  相似文献   

8.
Escherichia coli and Salmonella typhimurium strains grown in Luria-Bertani medium containing glucose secrete a small soluble heat labile organic molecule that is involved in intercellular communication. The factor is not produced when the strains are grown in Luria-Bertani medium in the absence of glucose. Maximal secretion of the substance occurs in midexponential phase, and the extracellular activity is degraded as the glucose is depleted from the medium or by the onset of stationary phase. Destruction of the signaling molecule in stationary phase indicates that, in contrast to other quorum-sensing systems, quorum sensing in E. coli and S. typhimurium is critical for regulating behavior in the prestationary phase of growth. Our results further suggest that the signaling factor produced by E. coli and S. typhimurium is used to communicate both the cell density and the metabolic potential of the environment. Several laboratory and clinical strains of E. coli and S. typhimurium were screened for production of the signaling molecule, and most strains make it under conditions similar to those shown here for E. coli AB1157 and S. typhimurium LT2. However, we also show that E. coli strain DH5alpha does not make the soluble factor, indicating that this highly domesticated strain has lost the gene(s) or biosynthetic machinery necessary to produce the signaling substance. Implications for the involvement of quorum sensing in pathogenesis are discussed.  相似文献   

9.
Lipoprotein (LP) is a major component of the outer membrane of bacteria in the family Enterobacteriaceae. LP induces proinflammatory cytokine production in macrophages and lethal shock in LPS-responsive and -nonresponsive mice. In this study, the release of LP from growing bacteria was investigated by immuno-dot blot analysis. An immuno-dot blot assay that could detect LP at levels as low as 100 ng/ml was developed. By using this assay, significant levels of LP were detected in culture supernatants of growing Escherichia coli cells. During mid-logarithmic growth, approximately 1 to 1.5 microgram of LP per ml was detected in culture supernatants from E. coli. In contrast, these culture supernatants contained 5 to 6 microgram/ml of lipopolysaccharide (LPS). LP release was not unique to E. coli. Salmonella typhimurium, Yersinia enterocolitica, and two pathogenic E. coli strains also released LP during in vitro growth. Treatment of bacteria with the antibiotic ceftazidime significantly enhanced LP release. Culture supernatants from 5-h cultures of E. coli were shown to induce in vitro production of interleukin-6 (IL-6) by macrophages obtained from LPS-nonresponsive C3H/HeJ mice. In contrast, culture supernatants from an E. coli LP-deletion mutant were significantly less efficient at inducing IL-6 production in C3H/HeJ macrophages. These results suggest, for the first time, that LP is released from growing bacteria and that this released LP may play an important role in the induction of cytokine production and pathologic changes associated with gram-negative bacterial infections.  相似文献   

10.
Interferon-gamma inducing factor (IGIF) is a recently identified cytokine which stimulates the production of interferon-gamma (IFN-gamma) by T cells and enhances natural killer (NK) cell cytolytic activity. Protein fold recognition, structure prediction and comparative modeling have revealed that IGIF is a member of the interleukin (IL)-1 cytokine family and has prompted the designation IL-1 gamma. Here we report functional similarities between members of the IL-1 family by comparing the effects of IL-1 alpha, IL-1 beta and IGIF on NK cell production of IFN-gamma. All three IL-1 types enhanced NK cell production of IFN-gamma when induced by IL-2 or IL-12, although at high concentrations (> 10 ng/ml), IGIF was five- to tenfold more potent than IL-1 alpha or IL-1 beta. This effect correlated with enhanced levels of mRNA for IFN-gamma when NK cells were stimulated with IGIF plus IL-12. In contrast to IL-12 and IL-2, the ability of IGIF to stimulate NK cell production of IFN-gamma was not increased by IL-1 alpha or IL-1 beta. The ability of IGIF to enhance IFN-gamma production was independent of the type I and type II IL-1 receptors or the IL-1R accessory protein. Together, these results identify IGIF as a potent stimulator of NK cell production of IFN-gamma and demonstrate that the effect of IGIF on NK cell production of IFN-gamma is similar to that of IL-1 alpha and IL-1 beta but distinct from that of IL-12.  相似文献   

11.
12.
13.
IL-1 alpha and IL-1 beta bind to receptors termed the type I and type II IL-1 receptors. The type I IL-1 receptor is responsible for specific signaling, while the type II IL-1 receptor functions as a nonsignaling decoy receptor. To determine the effect of a defect in IL-1-mediated signaling, mice have been produced with a genetically disrupted type I IL-1 receptor gene. Mice lacking type I IL-1 receptors are of normal vigor and exhibit no overt phenotype. B cells from type I IL-1R-/- mice activated in vitro with anti-IgM do not proliferate in response to IL-1, but do so in response to IL-4. Injection of murine IL-1 alpha does not induce detectable serum IL-6 levels in type I IL-1R-/- mice, but equivalent levels are produced in response to LPS. Type I IL-1R-/- mice have normal serum Ig levels and generate equivalent primary and secondary Ab responses as wild-type mice. In response to LPS, acute phase protein mRNA induction are equivalent in type I IL-1R-/- and wild-type mice. Type I IL-1R-/- mice do not differ from control mice in susceptibility to either a lethal challenge with D-galactosamine plus LPS or high dose LPS. Interestingly, ICE-/-/type I IL-1R-/- double mutant mice are resistant to high dose LPS. Type I IL-1R-/- mice backcrossed to the C57BL/6 background were as equally resistant as wild-type mice to Listeria monocytogenes.  相似文献   

14.
Activation of the immune system by lipopolysaccharide (LPS) produces physiological, neuroendocrine and behavioral effects, some of which are mediated by cytokine production. We have previously shown that the cytokine interleukin-1 (IL-1) inhibits sexual behavior in female, but not male rats, while producing a comparable suppression of locomotion in both sexes. The present study examined the effects of LPS on sexual behavior and locomotion of male and female rats, and the involvement of IL-1 receptors in mediating the effects of IL-1 and LPS on females' behavior. Peripheral (i.p.) administration of LPS (50 or 250 microg/kg) significantly decreased sexual behavior in females, up to 6 h after administration, while it had no effect on male sexual behavior. However, locomotor activity, measured in the open-field test, was similarly reduced by LPS in both males and females. Pretreatment with the IL-1 receptor antagonist (IL-1ra) either i.p. (10 mg/kg) or intracerebroventricularly (i.c.v.) (50 microg/rat) did not prevent the inhibition of female sexual behavior and locomotion induced by either i.p. (50 microg/kg) or i.c.v. (200 or 400 ng/rat) administration of LPS, respectively. However, identical doses of IL-1ra significantly reversed the effects of IL-1beta, administered either i.p. (5 microg/kg) or i.c.v. (50 ng/rat), respectively. These results demonstrate that both LPS and IL-1beta produce marked inhibition of sexual behavior in female, but not in male rats. However, IL-1 receptors are not required for the effects of LPS on sexual behavior in female rats.  相似文献   

15.
BACKGROUND: Human natural killer (NK) cells mediate spontaneous cytotoxicity against tumor cells and represent the main precursors of lymphokine-activated killer (LAK) cell activity. A comparison of some aspects of NK and LAK cell activity was undertaken in 85 preoperative patients with breast cancer and 75 healthy donors. METHODS: NK cell activity (tested in 18-hour cultures of effector peripheral blood mononuclear cells [PBMC] with K562 or MOLT-4 tumor target cells) was significantly diminished in these patients as it was the fully mature LAK cell activity (i.e., interleukin-2 (IL-2)-induced cytotoxicity in PBMC) against NK resistant target cells. Using immunoenzymatic methods we showed that the reduced NK cell activity was due to abnormally high levels of prostaglandin E2 (PGE2) produced by monocytes in culture. RESULTS: PGE2 was found to suppress the production of IL-2 in these cultures. Removal of monocytes from PBMC restored to almost normal levels the deficient NK and LAK cell activity in patients with breast cancer and was also associated with a normalization in the levels of PGE2 and IL-2. Indomethacin and gamma-interferon (IFN-gamma) increased the NK and LAK cell activity in these patients up to the levels of healthy donors. When highly purified CD56+ cells (obtained by an immunomagnetic isolation technique) were used as effector cells, no differences in LAK cell activity could be noticed between healthy donors and patients with cancer. FACS and northern blot analyses demonstrated a PGE2-mediated down-regulation of IL-2 receptor (IL-2R) expression on CD56+ cells that correlated with reduced LAK cell activity. This inhibitory effect of PGE2 was noticeable in long-term LAK cultures and was abrogated in the presence of IFN-gamma or indomethacin. CONCLUSION: This study may have important implications in the potentiation of NK and LAK cell activity for immunotherapeutic protocols in patients with breast cancer.  相似文献   

16.
We determined the inhibitory activities of gatifloxacin against Staphylococcus aureus topoisomerase IV, Escherichia coli DNA gyrase, and HeLa cell topoisomerase II and compared them with those of several quinolones. The inhibitory activities of quinolones against these type II topoisomerases significantly correlated with their antibacterial activities or cytotoxicities (correlation coefficient [r] = 0.926 for S. aureus, r = 0.972 for E. coli, and r = 0.648 for HeLa cells). Gatifloxacin possessed potent inhibitory activities against bacterial type II topoisomerases (50% inhibitory concentration [IC50] = 13.8 microg/ml for S. aureus topoisomerase IV; IC50 = 0.109 microg/ml for E. coli DNA gyrase) but the lowest activity against HeLa cell topoisomerase II (IC50 = 265 microg/ml) among the quinolones tested. There was also a significant correlation between the inhibitory activities of quinolones against S. aureus topoisomerase IV and those against E. coli DNA gyrase (r = 0.969). However, the inhibitory activity against HeLa cell topoisomerase II did not correlate with that against either bacterial enzyme. The IC50 of gatifloxacin for HeLa cell topoisomerase II was 19 and was more than 2,400 times higher than that for S. aureus topoisomerase IV and that for E. coli DNA gyrase. These ratios were higher than those for other quinolones, indicating that gatifloxacin possesses a higher selectivity for bacterial type II topoisomerases.  相似文献   

17.
The last two amino acids in the nascent peptide influence translation termination in E. coli (Mottagui-Tabar et al., 1994; Bj?rnsson et al., 1996). We have compared the effects on termination in Escherichia coli, Bacillus subtilis and Salmonella typhimurium obtained by varying the -1 and -2 codons upstream of the weak UGAA stop signal. The peptide effect from the penultimate amino acid on translation termination in B. subtilis is similar to that seen in E. coli (with 66.5% RF-2 amino acid sequence similarity), whereas the influence in S. typhimurium (with 95.3% similarity to E. coli) is weaker. The effect of changing the -1 codon (P-site) is weaker in S. typhimurium as compared to those in E. coli and B. subtilis. RF-2s from E. coli and S. typhimurium have a threonine or alanine at position 246, respectively. This amino acid exchange in RF-2 can explain the difference in efficiency and toxicity during overexpression when E. coli and S. typhimurium are compared (Uno et al., 1996). However, B. subtilis RF-2 also has an alanine at that position, yet the sensitivity to the nascent peptide is similar to that in E. coli. Thus, the amino acid difference at position 246 in the RF-2 sequences cannot explain why termination in E. coli and B. subtilis is similar in peptide sensitivity while being different from that in S. typhimurium. Sequence alignments of RF-2 from the three bacteria show other regions of the molecule that could be involved in the functional interactions with the C-terminal end of the nascent peptide.  相似文献   

18.
The structure-activity relationships of lipopolysaccharide (LPS) in tumor necrosis factor-alpha (TNF-alpha) production and induction of macrophage cell death in the presence of cycloheximide (CHX) were examined in a murine macrophage-like cell line, J774.1. TNF-alpha production is one of the characteristic phenotypes of LPS-activated macrophages, and is observed upon incubation with LPS. On the contrary, macrophage cell death, which had been found in our laboratory (Amano F., Karahashi H., J. Endotoxin Res., 3, 415423 (1996)) and was examined as the release of lactate dehydrogenase (LDH) from cells into the culture supernatant, was observed 2.5 h after the addition of LPS in the presence of CHX. However, both TNF-alpha production and macrophage cell death were similarly dependent on the structures of LPS and lipid A. At more than 10 ng/ml, wild-type LPS from E.coli and S. minnesota exhibited the highest activity, and LPS as well as diphosphoryl lipid A from S. minnesota rough mutants also exhibited activity, but E. coli LPS detoxified by alkaline treatment or monophosphoryl lipid A from S. minnesota exhibited no activity even at 100 ng/ml. These results suggest that LPS-induced macrophage cell death in the presence of CHX shows similar requirements for LPS and/or lipid A structures as for the macrophage activation at higher doses than 10 ng/ml, although the former was not observed at 1 ng/ml LPS, while the latter was. However, TNF-alpha does not seem to be involved in the induction of macrophage cell death, because a neutralizing anti-TNF-alpha antibody failed to block the macrophage cell death and because recombinant TNF-alpha had little effect on the extent of LDH release in the presence or absence of LPS and/or CHX, and also because TNF-alpha production by LPS was abolished in the presence of CHX.  相似文献   

19.
Undifferentiated spondyloarthropathy (USpa) may either represent a forme fruste of other spondyloarthropathies like reactive arthritis or be a different disease entity. To study the link between USpa and reactive arthritis, we studied the presence of IgA antibodies to Yersinia enterocolitica, Salmonella typhimurium, Shigella flexneri, Campylobacter jejuni and Chlamydia trachomatis in sera from 14 patients with USpa (European Spondyloarthropathy Study Group criteria) using ELISA. Escherichia coli was used as a control antigen. An OD value of more than the mean +/- 2 S.D. of 51 blood donors was considered positive. Five patients had elevated IgA antibodies to S. flexneri, while two patients each had elevated antibody levels to S. typhimurium and Chlamydia. No patient had elevated antibodies to Y. enterocolitica, C. jejuni and E. coli. Among 51 normals, 1, 4, 3, 2 and 3 had elevated antibodies to S. flexneri, S. typhimurium, Y. enterocolitica, C. jejuni and E. coli, respectively. Nine of 14 patients with USpa had antibodies to one of the bacteria implicated in reactive arthritis: of these, antibodies to Shigella were the most frequent. Thus, a proportion of patients with USpa may in fact have reactive arthritis.  相似文献   

20.
Twenty-four-hour variations in cellularity, lipopolysaccharide (LPS)- and concanavalin A (Con A)-induced cell proliferation, and natural killer (NK) activity were examined in submaxillary lymph nodes and spleen of rats injected with Freund's complete adjuvant or its vehicle and kept under light from 08:00 to 20:00 h daily. A significant daily variation in cellularity was detected, exhibiting maxima at 09:00 h in submaxillary lymph nodes (nonimmunized and immunized rats) and at 13:00 h in spleen (immunized rats only). Submaxillary lymph node LPS- and Con A-mitogenic effect displayed maximal activity during daytime (peak at 13:00-17:00 h). In spleen, the maxima for 24-h rhythm in LPS-induced cell proliferation and NK activity occurred at midnight and at early morning (09:00 h), respectively. Con A-induced spleen cell proliferation peaked at midday in nonimmunized rats only. Injection of the immunosuppressive drug cyclosporine decreased Freund's adjuvant-induced augmentation of LPS and Con A mitogenic effect in both tissues and diminished spleen cell number. Cyclosporine blunted circadian rhythms in submaxillary lymph node Con A response and cell number, while it shifted the maximum in LPS effect to peak at 01:00 h. Cyclosporine also suppressed the circadian changes in LPS- and Con A-induced spleen cell proliferation, but not those found in NK activity. The results indicate the existence of 24-h rhythms in immune responses of rat submaxillary lymph nodes and spleen with maxima at different times of the day and that were significantly affected by cyclosporine injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号