首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times.  相似文献   

2.
Nickel sequestration in a kaolinite-humic acid complex   总被引:1,自引:0,他引:1  
Incorporation of first row transition metals into stable surface precipitates can play an important role in reducing the bioavailability of these metals in neutral and alkaline soils. Organic coatings may interfere with this sorption mechanism by changing the surface characteristics and by masking the mineral surface from metal sorptives. In this study, kinetic sorption and desorption experiments were combined with extended X-ray absorption fine structure (EXAFS) spectroscopy to elucidate the effect of humic acid (HA) coatings on the formation and stabilization of nickel precipitates at the kaolinite-water interface. Initial Ni uptake (pH 7.5, [Ni]i = 3 mM, and I = 0.02 M NaNO3) increased with greater amounts of HA coated onto the kaolinite surface. Ni uptake continued over an extended period of time without reaching an apparent equilibrium. EXAFS analysis of the Ni sorption complex structures formed over time (up to 7 months) revealed the formation of a Ni-Al layered double hydroxide (LDH) precipitate at the kaolinite surface in the absence of HA. HA alone formed an inner-sphere complex with Ni (with 2 carbon atoms at an average radial distance of 2.85 A). A Ni-Al LDH precipitate phase was formed at the kaolinite surface in the presence of a 1 wt % HA coating. However, with 5 wt % HA coated at the kaolinite surface, the formation of a surface precipitate was slowed significantly, and the precipitate formed was similar in structure to Ni(OH)2(s). The Ni(OH)2 precipitate was not resistant to proton dissolution, while the Ni-Al LDH precipitate was. These results augment earlier findings that the incorporation of Ni and other first row transition metals into stable surface precipitates is an important sequestration pathway for toxic metals in the environment, despite the presence of ubiquitous coating materials such as humic acids.  相似文献   

3.
Recent spectroscopic studies have demonstrated the formation of layered double hydroxides (LDH) and phyllosilicates upon sorption of Zn2+, Ni2+, and Co2+ to clay minerals and aluminum oxides at neutral to alkaline pH and at relatively high initial metal concentrations (>1 mM). The intention of the present study was to investigate whether such phases also form in soil under slightly acidic conditions and at lower metal concentrations. Columns packed with a loamy soil were percolated with aqueous solutions containing 0.1 or 0.2 mM Zn, Ni, Co, and Cd in a 10 mM CaCl2 background at pH 6.5. Metal breakthrough curves indicated a rapid initial sorption step, resulting in retarded breakthrough fronts, followed by further slow metal retention during the entire loading period of 42 days (7000 pore volumes). Total metal sorption and the contribution of slow sorption processes decreased in the order Zn > Ni > Co > Cd. Leaching the reacted soil with 10 mM CaCl2 at pH 6.5 remobilized 8% of the total retained Zn, 15% of Ni, 21% of Co, and 77% of Cd. Subsequent leaching with acidified influent (pH 3.0) remobilized most of the remaining metals. X-ray absorption fine-structure (XAFS) spectroscopy revealed that slow Zn sorption was due to the formation of a Zn-Al LDH precipitate. Although Ni, Co, and Cd concentrations were too low for XAFS analysis, their leaching patterns suggest that part of Ni and Co were also incorporated in solid phases, while most sorbed Cd was still present as exchangeable sorption complex after 42 days. A small but significant percentage of the sorbed metals (2-5%) remained in the soil, even after leaching with more than 3000 pore volumes at pH 3.0, which may suggest micropore diffusion or incorporation into more stable mineral phases.  相似文献   

4.
Sequestration of Ni(II) on diatomite as a function of time, pH, and temperature was investigated by batch, XPS, and EXAFS techniques. The ionic strength-dependent sorption at pH < 7.0 was consistent with outer-sphere surface complexation, while the ionic strength-independent sorption at pH = 7.0-8.6 was indicative of inner-sphere surface complexation. EXAFS results indicated that the adsorbed Ni(II) consisted of ~6 O at R(Ni-O) ≈ 2.05 ?. EXAFS analysis from the second shell suggested that three phenomena occurred at the diatomite/water interface: (1) outer-sphere and/or inner-sphere complexation; (2) dissolution of Si which is the rate limiting step during Ni uptake; and (3) extensive growth of surface (co)precipitates. Under acidic conditions, outer-sphere complexation is the main mechanism controlling Ni uptake, which is in good agreement with the macroscopic results. At contact time of 1 h or 1 day or pH = 7.0-8.0, surface coprecipitates occur concurrently with inner-sphere complexes on diatomite surface, whereas at contact time of 1 month or pH = 10.0, surface (co)precipitates dominate Ni uptake. Furthermore, surface loading increases with temperature increasing, and surface coprecipitates become the dominant mechanism at elevated temperature. The results are important to understand Ni interaction with minerals at the solid-water interface, which is helpful to evaluate the mobility of Ni(II) in the natural environment.  相似文献   

5.
Extended X-ray absorption fine structure (EXAFS) analysis of zinc sorption on montmorillonite showed that different types of surface complexes or surface precipitates were formed depending on the reaction time. With an initial zinc concentration of 10(-3) M at neutral pH, zinc remained octahedrally coordinated with about six oxygen atoms at Zn-O bond distances of 2.02-2.07 A for up to six months. For samples aged up to 11 days, the Zn-Zn contribution in the second shell suggested formation of multinuclear surface complexes or surface precipitates. For samples aged 20 days and more, Zn-Zn and Zn-Si contributions in the second shell suggested formation of mixed metal coprecipitates such as a Zn phyllosilicate-like phase. Formation of these mixed metal solids probably accounts for the slow continuous sorption reaction at aging times exceeding 20 days. Sequestration of Zn in mixed metal precipitates and the stability of these phases can reduce the concentration, mobility, and toxicity of Zn in soils or sediments.  相似文献   

6.
Soils that have been acutely contaminated by heavy metals show distinct characteristics, such as colonization by metal-tolerant plant species and topsoil enrichment in weakly degraded plant debris, because biodegradation processes are strongly inhibited by contamination. Such an organic topsoil, located downwind of an active zinc smelter and extremely rich in Zn (approximately 2%, dry weight), was investigated by X-ray diffraction, synchrotron-based X-ray microfluorescence, and powder- and micro-extended X-ray absorption fine structure (EXAFS) spectroscopy for Zn speciation and by isotopic dilution for Zn lability. EXAFS spectra recorded on size fractions and on selected spots of thin sections were analyzed by principal component analysis and linear combination fits. Although Zn primary minerals (franklinite, sphalerite, and willemite) are still present (approximately 15% of total Zn) in the bulk soil, Zn was found to be predominantly speciated as Zn-organic matter complexes (approximately 45%), outer-sphere complexes (approximately 20%), Zn-sorbed phosphate (approximately 10%), and Zn-sorbed iron oxyhydroxides (approximately 10%). The bioaccumulated Zn fraction is likely complexed to soil organic matter after the plants' death. The proportion of labile Zn ranges from 54 to 92%, depending on the soil fraction, in agreement with the high proportion of organically bound Zn. Despite its marked lability, Zn seems to be retained in the topsoil thanks to the huge content of organic matter, which confers to this horizon a high sorption capacity. The speciation of Zn in this organic soil horizon is compared with that found in other types of soils.  相似文献   

7.
Predicting the mobility of heavy metals in soils requires models that accurately describe metal adsorption in the presence of competing cations. They should also be easily adjustable to specific soil materials and applicable in reactive transport codes. In this study, Cd adsorption to an acidic soil material was investigated over a wide concentration range (10(-8) to 10(-2) M CdCl2) in the presence of different background electrolytes (10(-4) to 10(-2) M CaCl2 or MgCl2 or 0.05 to 0.5 M NaCl). The adsorption experiments were conducted at pH values between 4.6 and 6.5 A reaction-based sorption model was developed using a combination of nonspecific cation exchange reactions and competitive sorption reactions to sites with high affinity for heavy metals. This combined cation exchange/specific sorption (CESS) model accurately described the entire Cd sorption data set. Coupled to a solute transport code, the model accurately predicted Cd breakthrough curves obtained in column transport experiments. The model was further extended to describe competitive sorption and transport of Cd, Zn, and Ni. At pH 4.6, both Zn and Ni exhibited similar sorption and transport behavior as observed for Cd. In all transport experiments conducted under acidic conditions, heavy metal adsorption was shown to be reversible and kinetic effects were negligible within time periods ranging from hours up to four weeks.  相似文献   

8.
Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy for Bangladesh groundwater drinking supplies. EC is based on the rapid in situ dissolution of a sacrificial Fe(0) anode to generate iron precipitates with a high arsenic sorption affinity. We used X-ray absorption spectroscopy (XAS) to investigate the local coordination environment (<4.0 ?) of Fe and As in EC precipitates generated in synthetic Bangladesh groundwater (SBGW). Fe and As K-edge EXAFS spectra were found to be similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm(2)) used to generate samples. Shell-by-shell fits of the Fe K-edge EXAFS spectra indicated that EC precipitates consist of primarily edge-sharing FeO(6) octahedra. The absence of corner-sharing FeO(6) octahedra implies that EC precipitates resemble nanoscale clusters (polymers) of edge-sharing octahedra that efficiently bind arsenic. Shell-by-shell fits of As K-edge EXAFS spectra show that arsenic, initially present as a mixture of As(III) and As(V), forms primarily binuclear, corner-sharing As(V) surface complexes on EC precipitates. This specific coordination geometry prevents the formation of FeO(6) corner-sharing linkages. Phosphate and silicate, abundant in SBGW, likely influence the structure of EC precipitates in a similar way by preventing FeO(6) corner-sharing linkages. This study provides a better understanding of the structure, reactivity, and colloidal stability of EC precipitates and the behavior of arsenic during EC. The results also offer useful constraints for predicting arsenic remobilization during the long-term disposal of EC sludge.  相似文献   

9.
Recent studies on the speciation of Zn in contaminated soils confirmed the formation of Zn-layered double hydroxide (LDH) and Zn-phyllosilicate phases. However, no information on the kinetics of the formation of those phases under field conditions is currently available. In the present study, the transformation of Zn in a field soil artificially contaminated with ZnO containing filter dust from a brass foundry was monitored during 4 years using extended X-ray absorption fine structure (EXAFS) spectroscopy. Soil sections were studied by micro-X-ray fluorescence (micro-XRF) and micro-EXAFS spectroscopy. EXAFS spectra were analyzed by principal component analysis (PCA) and linear combination fitting (LCF). The results show that ZnO dissolved within 9 months and that half of the total Zn reprecipitated. The precipitate was mainly of the Zn-LDH type (>75%). Only a minor fraction (<25%) may be of Zn-phyllosilicate type. The remaining Zn was adsorbed to soil organic and inorganic particles. No significant changes in Zn speciation occurred from 9 to 47 months after the contamination. Thermodynamic calculations show that both Zn-LDH and Zn-phyllosilicate may form in the presence of ZnO but that the formation of Zn-phyllosilicate would be thermodynamically favored. Thus, the dominance of Zn-LDH found by spectroscopy suggests that the formation of the Zn precipitates was not solely controlled bythermodynamics but also contained a kinetic component. The rate-limiting step could be the supply of Al and Si from soil minerals to the Zn-rich solutions around dissolving ZnO grains.  相似文献   

10.
Heavy metal ions (Ni(2+), Zn(2+), and Cr(3+)) can be effectively removed from real polynary metal ions-bearing electroplating wastewaters by a carbonation process, with ~99% of metal ions removed in most cases. The synchronous formation of layered double hydroxide (LDH) precipitates containing these metal ions was responsible for the self-purification of wastewaters. The constituents of formed polynary metals-LDHs mainly depended on the Ni(2+):Zn(2+):Cr(3+) molar ratio in wastewaters. LDH was formed at pH of 6.0-8.0 when the Ni(2+)/Zn(2+) molar ratio ≥ 1 where molar fraction of trivalent metal in the wastewaters was 0.2-0.4, otherwise ZnO, hydrozincite, or amorphous precipitate was observed. In the case of LDH formation, the residual concentration of Ni(2+), Zn(2+), and Cr(3+) in the treated wastewaters was very low, about 2-3, ~2, and ~1 mg/L, respectively, at 20-80 °C and pH of 6.0-8.0, indicating the effective incorporation of heavy metal ions into the LDH matrix. Furthermore, the obtained LDH materials were used to adsorb azoic dye GR, with the maximum adsorption amount of 129-134 mg/g. We also found that the obtained LDHs catalyzed more than 65% toluene to decompose at 350 °C under ambient pressure. Thus the current research has not only shown effective recovery of heavy metal ions from the electroplating wastewaters in an environmentally friendly process but also demonstrated the potential utilization of recovered materials.  相似文献   

11.
A soil profile contaminated as a result of Zn smelting operations from the historic Palmerton, PA smelting facility was characterized using X-ray absorption fine structure spectroscopy (XAFS) and X-ray diffraction (XRD) as bulk techniques, coupled with electron microprobe (EM), and microfocused XAFS as microscopic techniques to determine the chemical forms of Zn and elucidate its geochemical fate. The black, organic matter-rich topsoil contained 6200 mg/ kg Zn and was strongly acidic (pH 3.2). Bulk XAFS revealed that about 2/3 of Zn was bound in franklinite and 1/3 bound in sphalerite. Both minerals may have been aerially deposited from the smelter operation. Microspectroscopy detected also minor amounts of Zn adsorbed to Fe and Mn (hydr)oxides as inner-sphere sorption complexes, which may have formed after weathering of the Zn minerals. About 10% of the total Zn in this sample could be easily leached. In contrast, the yellowish, loamy subsoil contained less Zn (890 mg/kg) and had a higher pH of 3.9. XAFS revealed that Zn was mostly bound to Al-groups and to a lesser extent to Fe and Mn (hydr)oxides. Minor amounts of outer-sphere complexes or organic matter-bound Zn species could also be detected. About 70% of the total Zn content could be easily leached, indicating that outersphere sorption complexes have been underestimated and/ or inner-sphere sorption complexes are weak due to the low pH. The Zn forms in the subsoil most likely derive from weathering of the Zn minerals in the topsoil. Due to the lack of minerals incorporating Zn and due to the low pH, the availability of Zn in the subsoil is as high as in the topsoil, while the total concentration is almost 1 order of magnitude smaller.  相似文献   

12.
The systematics and mechanisms of Zn uptake by hydroxyapatite (HAP) in preequilibrated suspensions open to PCO2 were characterized using a combination of batch sorption experiments, X-ray diffraction (XRD), and extended X-ray absorption fine structure spectroscopy (EXAFS) over a wide range of pH and Zn concentrations. Sorption isotherms of Zn(II) on HAP at pH 5.0 and 7.3 show an initial steep slope at low Zn(II) concentrations, followed by a plateau up to [Zn] < approximately 750 microM, suggesting Langmuir-type behavior. At [Zn] > 750 microM, a sharp rise in the pH 5.0 isotherm suggests precipitation, whereas slight continued uptake in the pH 7.3 isotherm is suggestive of an additional uptake mechanism. The sorption isotherm at pH 9.0 shows a steep uptake step at [Zn] < or = 0.8 microM, followed by an increasing linear trend up to [Zn] = 5 microM, without any indication of a maximum, suggesting that precipitation is an important uptake process at this pH. Zn K edge EXAFS results show a first oxygen shell at 1.96-1.98 +/- 0.02 A in sorption samples with [Zn]tot < or = 250 microM at pH 5.0, 7.3, and 9.0, consistent with tetrahedral coordination. EXAFS results reveal additional P and Ca neighbors that support formation of an inner-sphere Zn surface complex where the Zn is coordinated to surface P04 tetrahedra in a corner-sharing bidentate fashion, bridging a Ca atom. In contrast, EXAFS and XRD data indicate that precipitation of Zn3(PO4)2-4H2O (hopeite) dominates the mode of Zn uptake at [Zn]tot > or = 3 mM at pH 5.0. Principal component analysis and linear combination fits of EXAFS data reveal a mixture of inner-sphere Zn surface complexation and precipitation of Zn5(OH)6(CO3)2 (hydrozincite) in sorption samples for [Zn]tot = 5 mM at pH 7.3 and for [Zn]tot = 1 mM at pH 9.0.  相似文献   

13.
Zinc sorption by a bacterial biofilm   总被引:1,自引:0,他引:1  
Microbial biofilms are present in soils, sediments, and natural waters. They contain bioorganic metal-complexing functional groups and are thought to play an important role in metal cycling in natural and contaminated environments. In this study, the metal-complexing functional groups present within a suspension of bacterial cell aggregates embedded in extracellular polymeric substances (EPS) were identified in Zn adsorption experiments conducted at pH 6.9 with the freshwater and soil bacterium Pseudomonas putida. The adsorption data were fit with the van Bemmelen-Freundlich model. The molecular speciation of Zn within the biofilm was examined with Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The Zn EXAFS data were analyzed by shell-by-shell fitting and linear least-squares fitting with reference spectra. Zinc sorption to the biofilm was attributed to predominantly Zn--phosphoryl (85 +/- 10 mol %) complexes, with a smaller contribution to sorption from carboxyl-type complexes (23 +/- 10 mol %). The results of this study spectroscopically confirm the importance of phosphoryl functional groups in Zn sorption by a bacterial biofilm at neutral pH.  相似文献   

14.
The long-term speciation of Zn in contaminated soils is strongly influenced by soil pH, clay, and organic matter content as well as Zn loading. In addition, the type of Zn-bearing contaminant entering the soil may influence the subsequent formation of pedogenic Zn species, but systematic studies on such effects are currently lacking. We therefore conducted a soil incubation study in which four soils, ranging from strongly acidic to calcareous, were spiked with 2000 mg/kg Zn using either ZnO (zincite) or ZnS (sphalerite) as the contamination source. The soils were incubated under aerated conditions in moist state for up to four years. The extractability and speciation of Zn were assessed after one, two, and four years using extractions with 0.01 M CaCl(2) and Zn K-edge X-ray absorption fine structure (XAFS) spectroscopy, respectively. After four years, more than 90% of the added ZnO were dissolved in all soils, with the fastest dissolution occurring in the acidic soils. Contamination with ZnO favored the formation of Zn-bearing layered double hydroxides (LDH), even in acidic soils, and to a lesser degree Zn-phyllosilicates and adsorbed Zn species. This was explained by locally elevated pH and high Zn concentrations around dissolving ZnO particles. Except for the calcareous soil, ZnS dissolved more slowly than ZnO, reaching only 26 to 75% of the added ZnS after four years. ZnS dissolved more slowly in the two acidic soils than in the near-neutral and the calcareous soil. Also, the resulting Zn speciation was markedly different between these two pairs of soils: Whereas Zn bound to hydroxy-interlayered clay minerals (HIM) and octahedrally coordinated Zn sorption complexes prevailed in the two acidic soils, Zn speciation in the neutral and the calcareous soil was dominated by Zn-LDH and tetrahedrally coordinated inner-sphere Zn complexes. Our results show that the type of Zn-bearing contaminant phase can have a significant influence on the formation of pedogenic Zn species in soils. Important factors include the rate of Zn release from the contaminant phases and effects of the contaminant phase on bulk soil properties and on local chemical conditions around weathering contaminant particles.  相似文献   

15.
The dissolution of UO(2) in a continuously stirred tank reactor (CSTR) in the presence of Ca(2+) and Zn(2+) was investigated under experimental conditions relevant to contaminated groundwater systems. Complementary experiments were performed to investigate the effect of adsorption and precipitation reactions on UO(2) dissolution. The experiments were performed under anoxic and oxic conditions. Zn(2+) had a much greater inhibitory effect on UO(2) dissolution than did Ca(2+). This inhibition was most substantial under oxic conditions, where the experimental rate of UO(2) dissolution was 7 times lower in the presence of Ca(2+) and 1450 times lower in the presence of Zn(2+) than in water free of divalent cations. EXAFS and solution chemistry analyses of UO(2) solids recovered from a Ca experiment suggest that a Ca-U(VI) phase precipitated. The Zn carbonate hydrozincite [Zn(5)(CO(3))(2)(OH)(6)] or a structurally similar phase precipitated on the UO(2) solids recovered from experiments performed in the presence of Zn. These precipitated Ca and Zn phases can coat the UO(2) surface, inhibiting the oxidative dissolution of UO(2). Interactions with divalent groundwater cations have implications for the longevity of UO(2) and the mobilization of U(VI) from these solids in remediated subsurface environments, waste disposal sites, and natural uranium ores.  相似文献   

16.
We studied the effects of ZnO nanoparticles [ZnO NPs, primary particle size 35 ± 10 nm (circular diameter, TEM)], bulk [160 ± 81 nm (circular diameter, TEM)], and Zn ions (from ZnCl(2)) on mortality, growth, and reproductive endpoints in the sediment dwelling marine amphipod Corophium volutator over a complete lifecycle (100 days). ZnO NPs were characterized by size, aggregation, morphology, dissolution, and surface properties. ZnO NPs underwent aggregation and partial dissolution in the seawater exposure medium, resulting in a size distribution that ranged in size from discrete nanoparticles to the largest aggregate of several micrometers. Exposure via water to all forms of zinc in the range of 0.2-1.0 mg L(-1) delayed growth and affected the reproductive outcome of the exposed populations. STEM-EDX analysis was used to characterize insoluble zinc precipitates (sphaerites) of high sulfur content, which accumulated in the hepatopancreas following exposures. The elemental composition of the sphaerites did not differ for ZnO NP, Zn(2+), and bulk ZnO exposed organisms. These results provide an illustration of the comparable toxicity of Zn in bulk, soluble, and nanoscale forms on critical lifecycle parameters in a sediment dwelling organism.  相似文献   

17.
The influence of soil-derived fulvic acid (SFA) on Ni(II) sorption and speciation in aqueous boehmite (gamma-AIOOH) suspensions was evaluated using a combination of sorption experiments and Ni K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy measurements. Co-sorption of SFA at the aqueous-boehmite interface modifies both the extent of Ni(II) sorption as well as the local structure of the sorbing Ni(II) ions. In SFA-free suspensions, Ni(II) sorbs by forming inner-sphere bidentate mononuclear complexes with surface aluminol groups. Addition of SFA increases Ni(II) sorption at pH conditions below the sorption edge observed in SFA-free suspensions and diminishes Ni(II) sorption at pH above the SFA-free sorption edge. When SFA is co-sorbed to boehmite, Ni(II) sorbs by forming both ligand-bridging ternary surface complexes (Ni(II)-SFA-boehmite) as well as surface complexes in which Ni(II) remains directly bonded to aluminol groups, that is, binary Ni(II)-boehmite or metal-bridging ternary surface complexes (SFA-Ni(II)-boehmite). The relative contribution of the individual sorption complexes depends heavily on geochemical conditions; the concentration of ligand-bridging complexes increases with increasing SFA sorption and decreasing pH. The local structure of sorbed Ni(II) does not change with increasing reaction time even though the extent of sorption continues to increase. This supports a slow uptake mechanism where surface or intraparticle diffusion processes are rate-limiting. This work demonstrates that the association of humic constituents with soil minerals can significantly modify the mechanisms controlling trace metal sorption and transport in heterogeneous aquatic environments.  相似文献   

18.
Little information is available concerning cosorbing oxyanion and metal contaminants in the environment, yet in most metal-contaminated areas, cocontamination by arsenate [AsO4, As(V)] is common. This study investigated the cosorption of As(V) and Zn on goethite at pH 4 and 7 as a function of final solution concentration. Complimentary extended X-ray absorption fine structure (EXAFS) spectroscopic data were collected at the As and Zn K-edges in order to glean information about the coordination environment of As and Zn at the goethite-water interface. Macroscopic sorption studies revealed that As(V) and Zn sorption on goethite increased in cosorption experiments beyond that suggested by single sorption isotherms. At pH 4 and 7, As(V) surface saturation was 3.2 and 2.2 micromol m(-2), respectively, and Zn surface saturation was absent at pH 4 and approximately 1.0 micromol m(-2) at pH 7. Arsenate sorption on goethite increased in the presence of Zn by 29% and by more than 500% at pH 4 and 7, respectively. In the presence of As(V), Zn sorption on goethite increased by 800 and 1300% at pH 4 and 7, respectively. More As(V) than Zn sorbed on goethite below surface saturation at pH 7. Above surface saturation, the Zn:As surface density ratio (SDR) remained constant at 0.91 +/- 0.03. At pH 4, the Zn:As SDR was less than 1 throughout the concentration range. Below As(V) surface saturation on goethite, As(V) formed bidentate binuclear bridging complexes on Fe and/or Zn octahedra, while Zn mainly formed edge-sharing complexes with Fe at the goethite surface. Above surface saturation, Zn was increasingly complexed by AsO4, gradually forming an adamite-like [Zn2(AsO4)OH] surface precipitate on goethite. Precipitated contaminants are more stable due to the limited dissolution kinetics of their solid phase. This study may therefore prove useful in remediation strategies of sites knowingly contaminated with oxyanions and metals.  相似文献   

19.
The relative leaching potential and degradation of water-dispersible CdSe and CdSe/ZnS quantum dots (QDs) were evaluated using small-scale soil columns. The potential of QDs to release toxic Cd(2+) and/or Se(2-)/SeO(3)(2-) ions upon degradation is of environmental concern and warrants investigation. Both classes of QDs exhibited limited soil mobility in CaCl(2), with more than 70% of the total Cd and Se species from QDs retained in the top soil after passing 10 column volumes of solution through the soil column. However, mobilization of Cd- and Se-species was observed when EDTA was used as the leaching solution. Approximately 98% of the total Cd(2+) loaded leached out from the Cd(2+)-spiked soil, while only 30% and 60% leached out from the CdSe and CdSe/ZnS QD-spiked soils, respectively. Soil column profiles and analysis of leachates suggest that intact QDs leached through the soil. Longer incubation (15 days) in soil prior to leaching indicated some degradation and/or surface modification of both QDs. These results suggest that chelating agents in the environment can enhance the soil mobility of intact and degraded QDs. It is apparent that QDs in soil, including the polymer-coated CdSe/ZnS QDs that are generally assumed to possess a higher degree of environmental stability, can undergo chemical transformations, which subsequently dictate their overall mobility.  相似文献   

20.
Determining how environmentally important trace metals are sequestered in soils at the molecular scale is critical to developing a solid scientific basis for maintaining soil quality and formulating effective remediation strategies. The speciation of Zn and Ni in ferromanganese nodules from loess soils of the Mississippi Basin was determined by a synergistic use of three noninvasive synchrotron-based techniques: X-ray microfluorescence (microXRF), X-ray microdiffraction (microXRD), and extended X-ray absorption fine structure spectroscopy (EXAFS). We show that Ni is distributed between goethite (alpha-FeOOH) and the manganese oxide lithiophorite, whereas Zn is bound to goethite, lithiophorite, phyllosilicates, and the manganese oxide birnessite. The selective association of Ni with only iron and manganese oxides is an explanation for its higher partitioning in nodules over the soil clay matrix reported from soils worldwide. This could also explain the observed enrichment of Ni in oceanic manganese nodules. The combination of these three techniques provides a new method for determining trace metal speciation in both natural and contaminated environmental materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号