首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刚玉-氮化硅-碳化硅复合材料的性能研究   总被引:2,自引:2,他引:0       下载免费PDF全文
以棕刚玉、氮化硅和碳化硅为原料在氧化气氛下制成试样.将试样分别在1500 ℃、1550 ℃和1600 ℃保温5 h进行埋炭处理.利用XRD、SEM和EDS等检测方法,结合热力学分析,研究了氧化气氛烧成后试样的物相变化以及高温埋炭条件下Si_3N_4的稳定性.结果表明:氧化气氛烧成后生成一种莫来石固溶体Si_6Al_(10)O_(21)N_4;高温埋炭处理后Si_3N_4和Si_6Al_(10)O_(21)N_4会部分转化为SiC,Si_3N_4向SiC明显转化的温度大于1500 ℃,Si_6Al_(10)O_(21)N_4向SiC明显转化的温度大于1550 ℃.  相似文献   

2.
添加Al_2O_3-Y_2O_3烧结助剂的无压烧结Si_3N_4的研究   总被引:6,自引:0,他引:6  
本文研究了 1740~1780℃范围内以Al_2O_3-Y_2O_3 为烧结助剂的 Si_3N_4 的无压烧结性能。结果表明:加少量Al_2O_3-Y_2O_3的Si_3N_4,即使含量<6.5%,只要工艺措施适当,也可获得高密度(相对密度达96~99%)的氮陶瓷,强度为500~600MN/m~2(部分达到700MN/m~2)。 试验表明,使用粒度细,α相含量高的Si_3N_4 原料,采用Si_3N_4 BN MgO 的埋粉,以及保温时间适当,是促进烧结的有效措施。研究指出:添加少量Al_2O_3-Y_2O_3 外加剂的 Si_3N_4 是以液相烧结为主。 用X射线衍射,扫描电镜和电子探针等检验了Si_3N_4的显微结构,表明 Al_2O_3已进入β-Si_3N_4 晶格,形成β’-Si_3N_4固溶体,晶格参数随 Al_2O_3 加入量增加而增大。  相似文献   

3.
为了解决加入金属Al粉的含锆耐火制品在高温下易产生裂纹、开裂的问题,以单斜Zr O_2粉、金属Al粉、复合稳定剂Mg CO_3·Mg(OH)_2·6H_2O和Y(NO_3)_3·6H_2O为主要原料,研究了加入不同量Al粉的Zr O_2-Al材料在埋炭条件下于1 000、1 200、1 400和1 500℃加热过程中性能、物相组成和显微结构的演变。结果表明:当Al粉加入量超过1%(w)时,热处理后试样产生较多裂纹,导致试样强度急剧降低。在加热过程中,Al与气氛中的O_2、CO和N_2反应生成Al_2O_3和Al N,生成的Al_2O_3再与试样中的稳定剂Mg O发生反应生成Mg Al_2O_4导致Zr O_2失稳,而Zr O_2失稳导致的体积效应以及生成Mg Al_2O_4和Al N产生的膨胀导致试样产生裂纹。因此,在锆碳和铝锆碳材料中添加金属Al时,其加入量不宜太多,以不超过1%(w)为宜。  相似文献   

4.
本文研究了Si、Al、Ca/N、O系统中以Si_3N_4、SiO_2、CaSiO_3、2CaO·Al_2O_3·SiO_2、CaO-Al_2O_3、Al_2O_3和β′-Si_2Al_4O_4N_4(β_(60))为边界的区域的亚固相关系。在此区域中发现一个新相,其组成接近CaO·1.33Al_2O_3·0.67Si_2N_2O(称S相),且与CaO·2Al_2O_3形成连续固溶体。在此区域中有14个相容性四面体,其中5个含有S相。  相似文献   

5.
不同烧结气氛下SiAlON结合刚玉材料的烧结行为和显微结构   总被引:2,自引:2,他引:0  
以α-Al_2O_3微粉和Si_3N_4粉为主要原料,分别以Al粉、AlN粉、SiO_2微粉、Al粉 Ce_2O_3粉、Al粉 Si粉 Ce_2O_3粉作添加剂,在空气中裸烧(氧化气氛)和空气中埋炭(还原气氛)的条件下,分别进行1350℃、1450℃、1550℃、1600℃保温6h的热处理后,制备了SiAlON结合刚玉复相材料,并研究了烧结气氛、烧结温度和添加剂种类对试样烧结行为和显微结构的影响。结果表明添加稀土氧化物Ce_2O_3或少量SiO_2微粉能促进材料的烧结;在氧化气氛下,以SiO_2微粉为添加剂的试样的致密化程度随处理温度的升高而降低,而在埋炭还原气氛下,其致密化程度随温度的升高而提高;SEM观察还表明,含不同添加剂的试样在不同气氛中处理后的显微结构也不同。  相似文献   

6.
以板状刚玉、石墨、活性α-Al_2O_3微粉等为主要原料、金属Al粉和单质Si粉为添加剂、酚醛树脂为结合剂,在埋焦炭条件下经1 200和1 400℃热处理制备低碳Al_2O_3–C耐火材料,研究了不同温度下低碳Al_2O_3–C材料中β-Sialon相的生成及对性能的影响。结果表明:1 200℃烧成后,试样中有短柱状AlN、Si_3N_4和SiC晶须等新物相生成;1 400℃烧成后,试样中物相AlN和Si_3N_4消失,有呈晶须及片状的β-Sialon相生成,Si C晶须长径比增加。SiC和β-Sialon等新物相的原位生成,提高了1 400℃烧成后试样的性能,常温耐压强度提高30.38%,达到87.75 MPa,常温抗折强度和高温抗折强度分别提高到20.01和15.69 MPa,弹性模量和载荷位移量都提高12%以上。热震稳定性改善显著,3次热震后常温耐压强度损失仅为8.23 MPa。  相似文献   

7.
硅粉生坯经过初次氮化制得硅–氮化硅–氧氮化硅体系的试样,分别于1 500和1 600℃氮气气氛下进行重烧实验,研究了高温稳定性。结果表明:在Si_2N_2O(s)与Si(l)两相接触的界面处,两者反应生成Si_3N_4(s)和介稳态SiO(g)。1 500℃重烧时体系氧分压[p(O_2)]处于Si_2N_2O相稳定存在的区间,故1 500℃重烧试样中Si_2N_2O相含量高;1 600℃重烧时体系p(O_2)小于Si_3N_4相能够稳定存在的临界值,Si(l)直接氮化生成Si_3N_4(s),故1 600℃重烧试样中β-Si_3N_4相是主要物相。体系中的SiO(g)与CO(g)反应生成纤维状SiC,由于SiO分压[p(SiO)]与温度T负相关,因此1 500℃重烧试样中SiC相的含量高于1 600℃重烧试样的。试样随炉冷却过程中,部分介稳态SiO(g)会与N2(g)反应生成α-Si_3N_4(s)。  相似文献   

8.
为解决电解铝行业Si_3N_4结合SiC耐火材料成本高,工艺控制复杂等问题,以工业SiC为主要原料,添加少量Si粉和Al粉,酚醛树脂为结合剂,经120℃烘干制备免烧SiC试样,采用CO_2气氛控制动态侵蚀法结合XRD和SEM研究其1 000℃时的抗冰晶石侵蚀性。结果表明:试样中的酚醛树脂转变为石墨,Si和Al转化为纤维状、粒状、柱状的SiC、Al_2O_3、Al N、Si_3N_4、3Al_2O_3·2SiO_2,以及Al、Si的氮氧化物等较为复杂的陶瓷结合体系,为免烧SiC材料提供了优异的抗冰晶石侵蚀性能。  相似文献   

9.
以α-Si_3N_4粉和黑刚玉为原料、Gd_2O_3为烧结助剂,采用无压烧结工艺制备了O’-Sialon/Si_3N_4复相陶瓷材料,研究了Gd_2O_3添加量和烧结温度对样品性能、相组成和显微结构的影响,探讨了Gd_2O_3对复相陶瓷的作用机理。结果表明:复相陶瓷主晶相为α-Si_3N_4、β-Si_3N_4和O’-Sialon,添加Gd_2O_3一方面可在高温烧结过程中形成液相,促进α-Si_3N_4的"溶解–析出"过程,有利于α-Si_3N_4向β-Si_3N_4的晶型转变以及β-Si_3N_4晶粒的生长;另一方面可促进α-Si_3N_4与Al_2O_3和Si O_2的固溶反应,生成O’-Sialon相,使样品中O’-Sialon含量增加。当Gd_2O_3添加量为6%(质量分数)时,经1 600℃烧结的样品SN-G6性能最佳:气孔率为23.29%;体积密度为2.31 g·cm~(–3);抗折强度达到105.57 MPa。  相似文献   

10.
以α-Si_3N_4粉末为原料、Al_2O_3–RE_2O_3(RE=Lu,Y,Gd和La)为烧结助剂,在1 800℃压烧结制备氮化硅陶瓷,研究了不同烧结助剂对材料的相组成、微观结构和力学性能的影响。结果表明:样品中α-Si_3N_4完全转化为β-Si_3N_4,所形成的长柱状晶粒生长发育良好。随着稀土阳离子半径的增大,材料的相对密度和力学性能呈增加趋势,其中Si_3N_4–Al_2O_3–Gd_2O_3的抗弯强度和断裂韧性分别达到860 MPa和7.2 MPa·m~(1/2)。由于稀土离子对烧结液相黏度的影响,Si_3N_4–Al_2O_3–Lu_2O_3和Si_3N_4–Al_2O_3–Y_2O_3中出现了晶粒异常长大的现象,而Si_3N_4–Al_2O_3–La_2O_3的基体与柱状晶粒界面结合较大导致材料力学性能降低。  相似文献   

11.
以闪速燃烧法合成的不同粒度的氮化硅铁颗粒(w(Si)=48.76%,w(N)=30.65%,w(Fe)=14.15%,w(O)=2.2%,w(Al)=0.8%)作为骨料,以粒度≤0.088 mm的氮化硅铁粉和Si粉(w(Si)=98.22%,w(Al)=0.15%)作为细粉,经混料、困料、成型、干燥和1 450℃保温24 h氮化烧成等工艺,制备了以Si_3N_4为主晶相的新型氮化硅质耐火材料。检测结果表明:所制备试样的显气孔率为29.2%,体积密度为2.39g·cm~(- 3),常温耐压强度为151 MPa,常温抗折强度为40.3 MPa,1 400℃高温抗折强度为12.2 MPa;其物相组成(w)为:β-Si_3N_472.03%,α-Si_3N_49.20%,Si_2N_2O 6.23%,Fe3Si 11.60%,Si O_20.94%。在高温条件下,随着体系中氧分压的不断降低,絮状的Si_2N_2O和Si_3N_4结合相主要由体系气相组分中的Si O、Si蒸气与N2、O_2反应形成。  相似文献   

12.
采用不同组分的Zr N、Si_3N_4和Y_2O_3混合粉末,在1 750℃高温固相反应合成Zr N–Si_3N_4–Y_2O_3复合材料,借助于X射线衍射仪表征6种按不同比例混合样品的物相组成。结果表明:在Zr N–Si_3N_4–Y_2O_3三元系统中,Zr N分别与Si_3N_4、Y_2O_3和Y2Si3O3N4(M相,黄长石结构)共存;M相为Si_3N_4和Y_2O_3在摩尔比为1:1时的产物,Zr N–Si_3N_4–Y_2O_3三元系统扩展为Zr N–Si_3N_4–Y_2O_3–Si O2四元系统,在该四元系统中,Zr N分别与M相、Y4Si2N2O7(J相,单斜Y4Al2O9结构)及Y5(Si O4)3N(H相,磷灰石结构)3种含钇硅酸盐及Si_3N_4、Y_2O_3共存。其中,J相和H相分别是Si2N2O(Si_3N_4和Si O2在摩尔比为1:1时的产物)和Y_2O_3在摩尔比分别为2:1和9:5时的产物。用Zr N–Si_3N_4–Y_2O_3体系相图可解析制备Zr N陶瓷和Zr N/Si_3N_4复合陶瓷的相组成。  相似文献   

13.
为了研究Al_2O_3-SiC-C材料与其他材料复合后的性能,在复合加入6%(w)的Al粉+Si粉的基础上,再分别加入质量分数为0、0.5%、1%、2%、4%和6%的电熔镁砂粉,以研究引入MgO对该复合材料热膨胀性和抗氧化性的影响,并探讨高温下MgO在Al_2O_3-SiC-C-Si-Al体系中可能发生的反应。结果表明:1)向Al、Si复合Al_2O_3-SiC-C材料中加入少量的镁砂粉后,MgO与C、Si、Al、SiC等发生反应生成Mg、CO等气体而导致材料结构疏松,降低了材料的抗氧化性;2)高温下,MgO与Al_2O_3以及由Si氧化生成的Si O2等形成复杂的多元体系,有大量的低熔点相生成,收缩效应明显,减弱了生成尖晶石所产生的膨胀效应。因此,必须严格控制镁砂粉加入量在2%(w)以下,才能使Al_2O_3-SiC-C材料保持优良的高温性能。  相似文献   

14.
以工业SiC为主要原料,添加少量Si粉和Al粉,以酚醛树脂为结合剂,经120℃烘干制备免烧SiC试样,分别在500、800和1 000℃埋炭热处理12 h,借助XRD和SEM研究其相组成和显微结构变化。结果表明:借助酚醛树脂炭化营造的低氧分压及Al-Si合金的动力学优势,500℃时结合相主要为Al-Si合金熔化产生的塑性相及部分Al_4C_3,800℃时结合相主要为Al_4C_3,1 000℃时形成了SiC、SiO_2、Al_4C_3和Al_2O_3等结合相,赋予了材料良好的结构和性能。  相似文献   

15.
SiAlON较Si_3N_4具有更好的高温稳定性,在炼铁体系具有更好的实用性;MgAlON比AlON低温稳定性好,是洁净钢、精品钢等炼钢体系用耐火材料;Al_4O_4C和Al_2OC是树脂结合Al-Al_2O_3系耐火材料高温增强相,具有无铬、低碳环保特点,用于连铸功能耐火材料具有很好的使用效果。基于此,介绍了Si-N-O、Si-Al-O-N、Mg-Al-O-N和Al-Si-C-O-N系结合相复合材料等的应用研究现状,展望了其发展前景。  相似文献   

16.
以电熔镁砂、α-Al_2O_3微粉、鳞片石墨、和炭黑为原料,制备低碳Mg O–Al_2O_3–C材料。通过改变原料混炼顺序来影响材料内原位尖晶石化反应,研究了原位尖晶石化反应对低碳Mg O–Al_2O_3–C材料结构与性能的影响。结果表明:试验温度下体系内固相反应、气–固反应均满足尖晶石生成的热力学条件。α-Al_2O_3微粉和炭黑经酚醛树脂造粒后以碳包覆Al_2O_3球体的形态存在材料中,体系内的尖晶石主要通过气–固反生成在包覆体表面,并阻碍Mg(g)向Al_2O_3球体内部扩散,导致1 400℃热处理后有Al_2O_3残余。尖晶石层有效地结合骨料与基质,提高了材料的力学性能。  相似文献   

17.
SiAlON较Si_3N_4具有更好的高温稳定性,在炼铁体系具有更好的实用性;MgAlON比AlON低温稳定性好,是洁净钢、精品钢等炼钢体系用耐火材料;Al_4O_4C和Al_2OC是树脂结合Al-Al_2O_3系耐火材料高温增强相,具有无铬、低碳环保特点,用于连铸功能耐火材料具有很好的使用效果。基于此,介绍了Si-N-O、Si-Al-O-N、Mg-Al-O-N和Al-Si-C-O-N系结合相复合材料等的应用研究现状,展望了其发展前景。  相似文献   

18.
为了在较低温度下制备性能较好的自结合碳化硅材料,在黑碳化硅的基础配料中引入聚碳硅烷(PCS),以二乙烯基苯(DVB)作溶剂和交联剂,经混练、成型、烘干后,于1 450℃保温5 h热处理,制备由聚碳硅烷原位热解产生的SiC结合的碳化硅材料,主要研究了PCS加入量(分别为黑碳化硅质量的3%、5%和7%)和热处理气氛(分别为N_2气氛和埋炭气氛)对碳化硅材料体积密度、显气孔率、常温耐压强度、常温抗折强度、高温抗折强度、抗热震性、物相组成和显微结构的影响。结果表明:1)随着PCS加入量的增加,热处理后碳化硅试样的致密度、常温强度、高温强度和烧后线收缩率均增大。2)在PCS加入量相同时,在两种气氛中热处理制备的碳化硅试样的致密度差别很小,但在N_2气氛中热处理制备的碳化硅试样的常温抗折强度、常温耐压强度和高温抗折强度均比在埋炭气氛中制备的小。3)在N_2气氛中热处理制备的碳化硅试样中含有少量Si_2N_2O,而在埋炭气氛中制备的碳化硅试样由β-SiC和α-SiC组成;在两种气氛中热处理制备的碳化硅试样中都生成了纤维状物质,但在埋炭气氛中制备的碳化硅试样的纤维状物质更多,长径比更大。  相似文献   

19.
以电熔镁砂、α-Al_2O_3微粉、板状刚玉、白刚玉、金属铝及高纯镁砂为原料,铝酸镁溶胶为结合剂,氮气条件下1 700℃保温4 h分别制备了MgO基和Al_2O_3基Al-MgO-Al_2O_3复合材料。研究了氮气低氧分压条件下MgO和Al_2O_3稳定性差异对Al-MgO-Al_2O_3复合材料微观结构的影响并揭示了MgO基和Al_2O_3基中MgAl ON形成机理。结果表明:在氮气低氧分压条件下,MgO比Al_2O_3更不稳定;在1 000℃以上随着温度的升高,体系MgO和Al_2O_3反应形成MgAl_2O_4,随着温度的升高,C-O_2反应的进行,体系内氧分压逐渐降低,MgO不稳定,分解为Mg(g)和O_2(g)。在MgO基体系中,MgO分解量较多,导致局部氧分压升高,金属Al部分将被氧化成Al_2O(g),与N_2(g),Mg(g)和O_2(g)发生反应,生成片状MgAl ON:Al_2O(g)+O_2(g)+N_2(g)+Mg(g)→MgAl ON(s)。而在Al_2O_3基体系中,由于MgO分解量减少,氧分压较低,高温下金属Al转变成Al(g),与N_2(g),Mg(g)和O_2(g)反生反应生成板片状MgAl ON:Al(g)+O_2(g)+N_2(g)+Mg(g)→MgAl ON(s)。  相似文献   

20.
为了制备致密的Si_3N_4陶瓷,在Si_3N_4粉末中加入15%(w)的助烧剂(Li_2O-Al_2O_3),经过球磨、造粒、烘干成型后,在传统电炉中埋碳和Si_3N_4粉,于1 550、1 600、1 650℃保温2 h后无压烧结制备Si_3N_4陶瓷,研究了烧结助剂配比和烧结温度对试样致密化、线收缩率、质量损失率、相转变以及微观结构的影响。结果表明:1)随着助烧剂中Li2O比例的增加,Si_3N_4陶瓷的致密度先增加后降低。随着温度的升高,Si_3N_4陶瓷的密度不断提高,当达到1 600和1 650℃时,试样的相对密度分别达到93%和95%以上; 2)在1 600℃时,所有试样物相中都已经生成β-Si_3N_4,并随着烧结温度的升高其转化率逐渐增加,显微结构照片可以看到明显的棒状β-Si_3N_4;3)采用低温埋碳和Si_3N_4粉的烧结工艺为低成本Si_3N_4陶瓷的制备提出了可行的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号