首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为优化转炉冶炼工艺,对180 t顶底复吹转炉进行少渣低温高效冶炼试验,采用少渣冶炼工艺,即:兑铁→脱磷期冶炼→前期倒渣→脱碳期冶炼→终点出钢,实现了前期渣碱度平均1.91,前期脱磷率平均56.25%,后期渣碱度平均3.02,终点脱磷率平均90%,过程石灰、白云石消耗分别降低30%、20%以上。冶炼前期碱度1.5~2.0,熔池温度1 350~1 400℃更有利于铁水中磷的脱除;随着出钢温度和终渣碱度的提高,钢中磷含量增加。  相似文献   

2.
王星  胡显堂  危尚好  周冬升  王东  刘敏 《钢铁》2022,57(11):53-63
 转炉具备冶炼低磷钢的生产能力,但生产超低磷9Ni钢,转炉脱磷工艺仍然是主要难点和研究重点。分析了钢水温度、炉渣碱度、FeO和渣量等对转炉脱磷的影响规律,并结合现场工装设备条件,对转炉双联法、三渣法、双渣法3种脱磷模式进行试验对比。双联脱磷工艺半钢温降大、单炉周期长、生产组织难度大,三渣法操作过程复杂、终点磷控制优势不明显。双渣法冶炼周期短,通过优化转炉脱磷工艺,实现了采用双渣法冶炼工艺生产超低磷钢,简化了超低磷钢转炉冶炼流程,提高了生产效率。研究了转炉脱磷主要工艺参数,分析得出采用脱碳氧枪喷头时,供氧流量按脱碳吹炼流量的83.5%控制,可达到良好的脱磷效果并减少铁水碳的烧损;脱磷期半钢碳含量不宜控制过低,半钢碳质量分数为3.0%~3.5%时能保证前期的脱磷效果和脱碳期的热量。脱磷期温度控制在1 300~1 350 ℃,脱磷率较高也有利于炉渣熔化。炉渣碱度为1.8~2.2时,可保证较高的脱磷率和化渣效果。一次倒渣量40%以上,脱碳期终点温度按1 590~1 610 ℃控制,终渣FeO质量分数不小于20%,终渣碱度大于6,转炉终点磷质量分数可降低到0.002%以下。采用下渣检测系统和滑板挡渣操作,严格控制下渣量,出钢采用磷含量低的合金,炉后钢水增磷可控制在小于0.000 5%。通过工业试验,实现了铸机成品磷质量分数小于0.002%。  相似文献   

3.
赵喜伟  闫忠 《宽厚板》2014,(4):20-23
舞钢在没有铁水预脱磷设备的条件下,为了提高转炉钢冶炼前期的脱磷效率,结合转炉不同吹炼时期特点,通过生产实践,探索高磷铁水顶底复吹转炉双渣法冶炼工艺生产低磷钢的方法,确定了吹炼过程中合理的氧枪枪位和原料投放时机,总结出一倒时间、碱度、温度等关键操作制度,最终开发出直接利用高磷铁水生产低磷钢的转炉双渣法冶炼工艺技术,满足了低磷钢种对钢水洁净度的要求,达到了降本增效的目的。  相似文献   

4.
结合现场生产实际,从转炉冶炼原材料条件、造渣制度、供氧制度、操作控制等方面分析了高磷耐候钢冶炼技术特点。生产实践表明:在正常的冶炼条件下,采用相对低的碱度2.2~2.5,并稳定炉渣中的FeO含量在15%以内是冶炼高磷耐候钢的关键;冶炼工艺优化后转炉出钢终点磷w(P)%平均可达到0.055%的水平。  相似文献   

5.
在太钢生产条件下,旨在探讨新建二钢北区脱磷转炉如何有效冶炼低磷钢水供下工序生产不锈钢。调研了二钢南区转炉冶炼不同钢水磷含量的现状;比较了转炉采用双渣法与单渣法操作对脱磷的影响;讨论了脱磷钢水高碳出钢和低碳出钢的相关问题,对二钢北区转炉脱磷工艺操作提出了建议。  相似文献   

6.
针对天津天铁冶金集团热轧板有限公司入炉铁水磷含量高、转炉生产低磷钢种偏多的现状,结合热轧转炉炼钢生产实际工艺和转炉钢水脱磷的机理,优化了转炉吹炼制度,造渣制度和温度制度等影响转炉脱磷的关键工艺参数,转炉冶炼终点磷含量控制在了合格范围内。  相似文献   

7.
采用80 t LD-LF-VD-CC流程生产超低氧弹簧钢(0.60%C、1.8%Si、0.8%Mn、5×10-6O),对精炼过程脱磷回磷进行了热力学分析和研究。结果表明,碱度≥4,FeO+MnO≤1%高碱度低氧化性炉渣精炼弹簧钢时,回磷现象不可避免,但还原脱磷有可能发生。通过转炉挡渣出钢,保持精炼渣高碱度,精炼时避免强搅拌,在高碱低氧化性炉渣下,可有效减少精炼过程钢水回磷,可控制[P]为0.010%。  相似文献   

8.
通过对100 t顶吹转炉双渣法深脱磷的工业性试验研究,结合不同吹炼时期冶炼特点,确立了吹炼过程需要控制的原料及操作制度等关键措施。控制倒炉温度、碱度、炉渣中的ω(FeO)及熔渣流动性等因素均是取得良好脱磷效果的重要保证。应用双渣法深脱磷生产试验取得了转炉出钢磷含量平均达到63×10-6,成品平均磷含量达到85×10-6的实绩。  相似文献   

9.
分析了转炉冶炼SWRH82B条件下,影响脱磷的主要因素。通过转炉冶炼前期分批加入石灰、污泥球和高枪位操作等工艺,使熔池快速形成1.5-1.7的碱度和含有15%~20%ω(FeO)的氧化渣,实现良好的脱磷条件;并在冶炼中期灵活调节枪位,均衡C-O反应速度;后期加入适量的污泥球,降低出钢温度,实现后期脱磷。采用此种高拉碳冶炼工艺,能够保证转炉出钢后,钢中磷含量控制在0.015%以内,实现良好的脱磷效果。  相似文献   

10.
为了减少RH吹氧升温对洁净度的影响,汽车用钢在转炉冶炼过程中终点温度往往更高,从而导致转炉冶炼过程脱磷困难。通过对渣钢间脱磷热力学和动力学的计算,分析了转炉"留渣+双渣"工艺条件下磷分配比与钢液成分、炉渣成分以及温度的关系;结合工业生产试验,通过改变倒渣时间以及调整炉渣成分并对转炉冶炼过程钢液、炉渣连续取样,研究了转炉"留渣+双渣"工艺条件下的脱磷变化规律并得出了快速脱磷的工艺条件:吹炼开始加入小块废钢和轻薄料快速增加炉渣FeO含量并控制钢液温度的升高,吹氧量达到40%时倒出高磷含量炉渣;吹氧量为40%~80%期间增加炉渣FeO含量,减少炉渣返干,防止钢液回磷;转炉终渣碱度控制在4.0左右,终渣TFe质量分数在18%~20%和尽量低的出钢温度。  相似文献   

11.
在统计分析了转炉前期炉渣碱度和钢水温度,终点炉渣碱度、终渣全铁含量和终点钢水温度对脱磷率影响的基础上,优化了0.29%Si,0.085%P铁水180t复吹转炉的高磷钢冶炼工艺。200炉冶炼结果表明,通过使用低枪位使钢水快速脱碳升温,控制前期炉渣碱度≥2.2、终点炉渣碱度2.8~3.2,终点炉渣全铁含量≤17%,转炉出钢温度1 650~1 680℃,可控制脱磷率≤60%,终点钢水磷含量均值为0.035%。  相似文献   

12.
为了稳定控制260 t转炉采用轻烧镁球冶炼时的终点磷含量,分析了转炉出钢温度、终点氧值、炉渣碱度和返干时机等对脱磷效果的影响。结果表明,当转炉终点氧值大于0.04%、炉渣碱度为2.5~3.3、转炉出钢温度小于1 680℃、返干时间小于2 min时,转炉脱磷率较高且控制稳定。  相似文献   

13.
对韶钢120 t复吹转炉双渣法冶炼低磷钢工艺进行了试验研究.结果表明,当转炉冶炼条件满足:铁水磷含量为0.13!,半钢炉渣碱度控制在2.0左右,TFe含量控制在15!左右,半钢倒渣量40!~60!的工况条件下,半钢平均脱磷率可达56!,最高达75!,冶炼终点钢水平均磷含量控制在0.011!,平均脱磷率为91.73!,满足了低磷钢生产要求.  相似文献   

14.
低碳高磷系列钢对炉渣碱度、枪位控制、化渣及脱磷效果的要求都不高。针对这一特点,使用生白云石作为主造渣料,取代石灰和轻烧这两种传统的主造渣料,同时采取低枪位、大氧压、强底吹的冶炼控制模式,大幅度降低该系列钢种的造渣料消耗成本,同时也降低了脱磷率,节约磷铁合金消耗成本;低枪位吹炼加快生产节奏,提高转炉生产效率。  相似文献   

15.
 基于炉外铁水深度预脱硫+转炉铁水预脱磷的铁水预处理工艺是当今低磷或超低磷钢冶炼的重要工艺平台,其中转炉铁水预处理脱磷是关键的技术环节。以国内“双联转炉炼钢法”预脱磷炉实践为出发点,在实验室高温炉上通过顶加脱磷剂、浸入吹氧进行了铁水模拟转炉预脱磷影响因素的试验研究,比较了铁水温度、铁水初始硅质量分数w(Si)i、脱磷渣碱度、供氧制度、搅拌强度、萤石加入量对脱磷效率的影响。结果表明,各因素对脱磷率影响的顺序为铁水温度>w(Si)i>供氧制度>脱磷渣碱度、搅拌强度>萤石加入量;适宜的工艺参数为铁水温度为1 300 ℃,w(Si)i 为0.10%~0.26%或低于0.30%,脱磷渣碱度为2.9~3.0,供氧制度中气氧与固氧各占50%或固氧稍偏多,维持较高的搅拌强度;转炉内铁水预脱磷处理可不加萤石。  相似文献   

16.
针对转炉冶炼低磷含量钢种时采用传统的"少批量多次加入"加料模式出现的问题,从转炉渣碱度、温度及氧化性对脱磷效果的影响展开深入分析,并结合生产实际提出转炉"辅料前期一次性加入"的加料模式。试验结果表明:通过"辅料前期一次性加入"的加料模式,冶炼前期脱磷效果得到显著提高,终点钢液中P≤50×10~(-6),脱磷效果显著,满足低磷钢产量的要求。  相似文献   

17.
任茂勇 《天津冶金》2012,(4):1-3,60
磷在钢中作为一种有害元素,必须在冶炼过程中将其去除。脱磷是转炉冶炼最重要的任务之一。低磷钢的冶炼对转炉冶炼工艺提出了更为严格的要求。在理论分析的基础之上,通过对实际生产中数据的汇总,分析了温度、炉渣碱度、碳含量炉渣氧化性、留渣操作及双渣操作等因素对转炉脱磷效果的影响,为提高天钢转炉的脱磷效果提供了参考。结果表明,保持相对较低的熔池温度、造高碱度的炉渣、保持一定的炉渣氧化性以及留渣和双渣操作等,都有利于脱磷反应的进行。  相似文献   

18.
陈泽民  李青  张锦文 《山西冶金》2023,(11):166-167+170
基于太钢工业纯铁磷含量控制现状,为解决磷含量偏高的问题,采用转炉“双渣”操作,比常规工艺脱磷率提高2%~5%。采用钢包炉脱磷,渣中FeO含量达到30%以上。相比常规工艺,炉渣氧化性更强、碱度更高,高氧化性、高碱度炉渣为脱磷提供了良好的热力学条件。采用转炉“双渣”与钢包炉脱磷相结合的工艺,在超低磷工业纯铁生产中取得了良好的效果。  相似文献   

19.
冶炼82B主要从入炉废钢、高碱度渣、双渣法、温度控制、高拉补吹法、挡渣出钢、避渣操作、钝化炉渣等方法控制钢中磷含量,本文主要通过论述影响转炉脱磷的各种因素,阐述82B冶炼过程脱磷的各个控制环节.  相似文献   

20.
鲍启伟  朱道良 《宽厚板》2013,19(4):13-15
针对舞钢铁水含量高、转炉脱磷难度大、脱磷原辅料消耗高、冶炼成本增加的难题,以冶金理论为指导,结合生产实践,通过科学配料、装料及工艺改进,有效提高了转炉脱磷效率,降低了辅料的消耗以及冶炼成本,保证了舞钢品种钢的冶炼生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号