首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the development process of a new type of steel reinforced wooden road safety barrier parametric computational simulations were used to simulate the experimental vehicle impact certification tests as prescribed by the standard EN 1317. First a detailed study of pre-stressed bolt connection behavior between the guardrail and the guardrail connector was performed using parametric computational simulations of which results were later used in a large scale vehicle impact simulations. A novel, simplified approach to the modeling of barrier wooden parts was introduced to achieve reasonable simulation times in parametric study of the barrier behavior under vehicle impact. The wooden parts of the road safety barrier were modeled indirectly through a modified contact definition. The developed safety barrier design was later successfully experimentally certified in a full scale crash test according to the standard EN 1317. Experimental results were in a good agreement with the results of the full scale crash test simulations, which validates the proposed computational safety barrier model and thus justifies the use of the simplified modeling approach of the wooden safety barrier parts.  相似文献   

2.
There exists considerable motivation to reduce vehicle weight through the adoption of lightweight materials, such as aluminium alloys, while maintaining energy absorption and component integrity under crash conditions. The interaction between tube hydroforming and behaviour during crash events was studied using lightweight automotive structural members. Dynamic crush tests were performed on 400 mm length sections of both non-hydroformed and hydroformed EN-AW 5018 aluminium alloy tubes. The force versus crush distance data from 76.2 mm diameter non-hydroformed tubes was compared with results from 76.2 mm square cross-section hydroformed tubes of 2.0 and 3.5 mm initial tube thicknesses. The hydroforming operation was performed using a high-pressure process in which the corner radius of the tube cross-section was varied. Explicit dynamic finite element simulations of the hydroforming and crash events were carried out with particular attention to the transfer of forming history from the hydroforming simulations to the crash models. The values of the tube thickness, work hardening, residual stress, and damage level at the end of the hydroforming simulation were used as the initial state for the crash model. The Gurson–Tvergaard–Needleman constitutive model was used to account for damage based on void nucleation, growth, and coalescence. Numerical predictions of the force versus crush distance response were compared to experimental data. The results have demonstrated that it is important to account for thickness changes and work hardening from previous forming operations, in simulating crash events. The energy absorbing capabilities of the hydroformed aluminium tubes decreased with sharper corner radius due to increased thinning of the material during the hydroforming process. It was found that the simulations slightly over-predicted the mean crush force compared to the experimental data.  相似文献   

3.
岳雷  王慧  杜豫川  姚红云 《工程力学》2019,36(11):158-167
我国当前设计方法对于山区公路,尤其是弯坡组合路段安全性考虑不足。基于车辆在弯坡组合路段行驶的安全性分析,以事故临界状态为限制条件建立弯坡组合路段安全模型。基于安全模型计算讨论了大小代表车型下,弯坡组合路段最小半径、最大坡长等关键设计指标受车路参数的影响及变化规律,利用Carsim仿真软件对变化规律进行了一致性验证,验证了该安全模型的有效性。根据安全模型及仿真计算结果,弯坡组合路段最小半径值与设计车速、路段坡度成正比,与路段超高、横向附着系数值成反比;弯坡组合路段最大坡长值与道路滚动阻力系数、滑移率成正比,与设计车速、路段坡度,以及车型大小成反比,但总体受超高值影响较小。进一步计算分析了考虑车辆实际运行车速下的弯坡组合路段设计指标阈值,并指出对于弯坡组合路段应尽可能采取小纵坡并增大最小半径值,以提高山区公路弯坡组合路段安全水平。  相似文献   

4.
A systematic procedure is presented for calibrating and validating a microscopic model of safety performance. The context in the model application is the potential for rear-end crashes at signalized intersections. VISSIM® v.4.3 provides the simulation platform for estimating the safety performance for individual vehicles and has been calibrated and validated using separate samples of observed vehicle tracking data extracted from the FHWA/NGSIM program. The calibration exercise involves four sequential steps: (1) heuristic selection of initial model inputs, (2) statistical screening using a Plackett–Burnman design, (3) fractional factorial analysis relating inputs to safety performance, and (4) genetic algorithm procedure for obtaining best estimate input values. Three measures of safety performance were considered: crash potential index, number of vehicles in conflict and total conflict duration per vehicle. Model consistency was assessed by comparing simulated and observed safety performance based on a separate validation sample of vehicle tracking data. The suggested procedure was found to effectively estimate model input parameters that closely matched safety performance measures in the observed validation data. This procedure yields an objective and efficient means for simulation model calibration applied for estimating safety performance at signalized intersections.  相似文献   

5.
Well-planted and maintained landscaping can help reduce driving stress, provide better visual quality, and decrease over speeding, thus improving roadway safety. Florida Department of Transportation (FDOT) Standard Index (SI-546) is one of the more demanding standards in the U.S. for landscaping design criteria at highway medians near intersections. The purposes of this study were to (1) empirically evaluate the safety results of SI-546 at unsignalized intersections and (2) quantify the impacts of geometrics, traffic, and landscaping design features on total crashes and injury plus fatal crashes. The studied unsignalized intersections were divided into (1) those without median trees near intersections, (2) those with median trees near intersections that were compliant with SI-546, and (3) those with median trees near intersections that were non-compliant with SI-546. A total of 72 intersections were selected, for which five-year crash data from 2006–2010 were collected.The sites that were compliant with SI-546 showed the best safety performance in terms of the lowest crash counts and crash rates. Four crash predictive models—two for total crashes and two for injury crashes—were developed. The results indicated that improperly planted and maintained median trees near highway intersections can increase the total number of crashes and injury plus fatal crashes at a 90% confidence level; no significant difference could be found in crash rates between sites that were compliant with SI-546 and sites without trees. All other conditions remaining the same, an intersection with trees that was not compliant with SI-546 had 63% more crashes and almost doubled injury plus fatal crashes than those at intersections without trees. The study indicates that appropriate landscaping in highway medians near intersections can be an engineering technology that not only improves roadway environmental quality but also maintains intersection safety.  相似文献   

6.
Numerical simulations of vehicle-to-pedestrian crash (VPC) are frequently used to develop a detailed understanding of how pedestrian injuries relate to documented vehicle damage. Given the complexity of the event, modeling the interactions typically involves subjective evaluations of the pre-impact conditions using a limited number of simulations. The goal of this study is to develop a robust methodology for obtaining the pre-impact pedestrian posture and vehicle speed utilizing multi-body simulations and optimization techniques. First, a continuous sequence of the pedestrian gait based on the literature data and simulations was developed for use as a design parameter during the optimization process. Then, the robustness and efficiency of three optimization algorithms were evaluated in a mock (idealized) crash reconstruction. The pre-impact parameters of the pedestrian and the vehicle models were treated as unknown design variables for the purpose of validating the optimization technique. While all algorithms found solutions in close vicinity of the exact solution, a genetic algorithm exhibited the fastest convergence. The response surfaces of the objective function showed higher sensitivities to the pedestrian posture and its relative position with respect to the vehicle than to the vehicle speed for the chosen design space. After validating the methodology with the mock reconstruction, a real-world vehicle-to-pedestrian accident was reconstructed using the data obtained from the field investigation and the optimization methodology. A set of pedestrian and vehicle initial conditions capable of matching all observed contact points was determined. Based on the mock and real-world reconstructions, this study indicates that numerical simulations coupled with optimization algorithms can be used to predict pedestrian and vehicle pre-impact conditions.  相似文献   

7.
Computational and experimental crash analysis of the road safety barrier   总被引:4,自引:0,他引:4  
The paper describes the computational analysis and experimental crash tests of a new road safety barrier. The purpose of this research was to develop and evaluate a full-scale computational model of the road safety barrier for use in crash simulations and to further compare the computational results with real crash test data. The impact severity and stiffness of the new design have been evaluated with the dynamic nonlinear elasto-plastic analysis of the three-dimensional road safety barrier within the framework of the finite element method with LS-DYNA code. Comparison of computational and experimental results proved the correctness of the computational model. The tests have also shown that the new safety barrier assures controllable crash energy absorption which in turn increases the safety of vehicle occupants.  相似文献   

8.
Pavement-tire friction provides the grip that is required for maintaining vehicle control and for stopping in emergency situations. Statistically significant negative correlations of skid resistance values and wet-pavement accident rates have been found in previous research. Skid resistance measured with SCRIM and crash data from over 1750 km of two-lane rural roads in the Spanish National Road System were analyzed to determine the influence of pavement conditions on safety and to assess the effects of improving pavement friction on safety. Both wet- and dry-pavement crash rates presented a decreasing trend as skid resistance values increased. Thresholds in SCRIM coefficient values associated with significant decreases in wet-pavement crash rates were determined. Pavement friction improvement schemes were found to yield significant reductions in wet-pavement crash rates averaging 68%. The results confirm the importance of maintaining adequate levels of pavement friction to safeguard traffic safety as well as the potential of pavement friction improvement schemes to achieve significant crash reductions.  相似文献   

9.
Predicting motor vehicle crashes using Support Vector Machine models   总被引:1,自引:0,他引:1  
Crash prediction models have been very popular in highway safety analyses. However, in highway safety research, the prediction of outcomes is seldom, if ever, the only research objective when estimating crash prediction models. Only very few existing methods can be used to efficiently predict motor vehicle crashes. Thus, there is a need to examine new methods for better predicting motor vehicle crashes. The objective of this study is to evaluate the application of Support Vector Machine (SVM) models for predicting motor vehicle crashes. SVM models, which are based on the statistical learning theory, are a new class of models that can be used for predicting values. To accomplish the objective of this study, Negative Binomial (NB) regression and SVM models were developed and compared using data collected on rural frontage roads in Texas. Several models were estimated using different sample sizes. The study shows that SVM models predict crash data more effectively and accurately than traditional NB models. In addition, SVM models do not over-fit the data and offer similar, if not better, performance than Back-Propagation Neural Network (BPNN) models documented in previous research. Given this characteristic and the fact that SVM models are faster to implement than BPNN models, it is suggested to use these models if the sole purpose of the study consists of predicting motor vehicle crashes.  相似文献   

10.
In this paper, we aim to identify the different factors that influence injury severity of highway vehicle occupants, in particular drivers, involved in a vehicle-train collision at highway-railway grade crossings. The commonly used approach to modeling vehicle occupant injury severity is the traditional ordered response model that assumes the effect of various exogenous factors on injury severity to be constant across all accidents. The current research effort attempts to address this issue by applying an innovative latent segmentation based ordered logit model to evaluate the effects of various factors on the injury severity of vehicle drivers. In this model, the highway-railway crossings are assigned probabilistically to different segments based on their attributes with a separate injury severity component for each segment. The validity and strength of the formulated collision consequence model is tested using the US Federal Railroad Administration database which includes inventory data of all the railroad crossings in the US and collision data at these highway railway crossings from 1997 to 2006. The model estimation results clearly highlight the existence of risk segmentation within the affected grade crossing population by the presence of active warning devices, presence of permanent structure near the crossing and roadway type. The key factors influencing injury severity include driver age, time of the accident, presence of snow and/or rain, vehicle role in the crash and motorist action prior to the crash.  相似文献   

11.
This paper presents the results of computer simulations of road safety barrier behaviour under vehicle crash conditions for high containment levels as mandated by the European standard EN 1317. Simulations were performed with the explicit finite element code LS-DYNA, running on a multiprocessor computational platform. A very good agreement of simulation and real crash tests results was observed, which in turn justifies the use of computer simulations in the process of development and certification of road safety barriers.  相似文献   

12.
Median barrier is used to prevent cross-median crashes on divided highways. Although it is well documented that crash frequencies increase after installing median barrier, little is known about median barrier crash severity outcomes. The present study estimated a nested logit model of median barrier crash severity using 5 years of data from rural divided highways in North Carolina. Vehicle, driver, roadway, and median cross-section design data were factors considered in the model. A unique aspect of the data used to estimate the model was the availability of median barrier placement and median cross-slope data, two elements not commonly included in roadway inventory data files. The estimation results indicate that collisions with a cable median barrier increase the probability of less-severe crash outcomes relative to collisions with a concrete or guardrail median barrier. Increasing the median barrier offset was associated with a lower probability of severe crash outcomes. The presence of a cable median barrier installed on foreslopes that were between 6H:1V and 10H:1V were associated with an increase in severe crash probabilities when compared to cable median barrier installations on foreslopes that were 10H:1V or flatter.  相似文献   

13.
Generalized nonlinear models for rear-end crash risk analysis   总被引:1,自引:0,他引:1  
A generalized nonlinear model (GNM)-based approach for modeling highway rear-end crash risk is formulated using Washington State traffic safety data. Previous studies majorly focused on causal factor identification and crash risk modeling using Generalized linear Models (GLMs), such as Poisson regression, Logistic regression, etc. However, their basic assumption of a generalized linear relationship between the dependent variable (for example, crash rate) and independent variables (for example, contribute factors to crashes) established via a link function can be often violated in reality. Consequently, the GLM-based modeling results could provide biased findings and conclusions. In this research, a GNM-based approach is developed to utilize a nonlinear regression function to better elaborate non-monotonic relationships between the independent and dependent variables using the rear end accident data collected from 10 highway routes from 2002 through 2006. The results show for example that truck percentage and grade have a parabolic impact: they increase crash risks initially, but decrease them after the certain thresholds. Such non-monotonic relationships cannot be captured by regular GLMs which further demonstrate the flexibility of GNM-based approaches in the nonlinear relationship among data and providing more reasonable explanations. The superior GNM-based model interpretations help better understand the parabolic impacts of some specific contributing factors for selecting and evaluating rear-end crash safety improvement plans.  相似文献   

14.
In addition to multi-vehicle accidents, large trucks are also prone to single-vehicle accidents on the mountainous interstate highways due to the complex terrain and fast-changing weather. By integrating both historical data analysis and simulations, a multi-scale approach is developed to evaluate the traffic safety and operational performance of large trucks on mountainous interstate highways in both scales of individual vehicle as well as traffic on the whole highway. A typical mountainous highway in Colorado is studied for demonstration purposes. Firstly, the ten-year historical accident records are analyzed to identify the accident-vulnerable-locations (AVLs) and site-specific critical adverse driving conditions. Secondly, simulation-based single-vehicle assessment is performed for different driving conditions at those AVLs along the whole corridor. Finally, the cellular-automaton (CA)-based simulation is carried out to evaluate the multi-vehicle traffic safety as well as the operational performance of the traffic by considering the actual speed limits, including the differential speed limits (DSL) at some locations. It is found that the multi-scale approach can provide insightful and comprehensive observations of the highway performance, which is especially important for mountainous highways.  相似文献   

15.
为保证驾驶员和乘员的安全性,综合运用多种有限元分析软件,建立多用途汽车的有限元正面碰撞模型。通过对正面碰撞模型进行数值模拟、分析碰撞仿真结果,得出整车动能、内能和沙漏能在碰撞瞬间的转换关系,获得碰撞过程中车身前围关键零件的能量吸收程度和变形形式,由此提出提高整车正面抗撞性的方法和措施。仿真结果表明:该方法可用于乘用车的正面碰撞等仿真分析,能达到降低研发周期、提高分析精度的目的。  相似文献   

16.
Farm vehicle crashes are a major safety concern for farmers as well as all other users of the public road system in agricultural states. Using data on farm vehicle crashes that occurred on Iowa's public roads between 2004 and 2006, we estimate a multinomial logit model to identify crash-, farm vehicle-, and driver-specific factors that determine farm vehicle crash injury severity outcomes. Estimation findings indicate that there are crash patterns (rear-end manner of collision; single-vehicle crash; farm vehicle crossed the centerline or median) and conditions (obstructed vision and crash in rural area; dry road, dark lighting, speed limit 55 mph or higher, and harvesting season), as well as farm vehicle and driver-contributing characteristics (old farm vehicle, young farm vehicle driver), where targeted intervention can help reduce the severity of crash outcomes. Determining these contributing factors and their effect is the first step to identifying countermeasures and safety strategies in a bid to improve transportation safety for all users on the public road system in Iowa as well as other agricultural states.  相似文献   

17.
This paper presents partial results of a study undertaken by the University of Auckland in cooperation with the Ministry of Transport in New Zealand, into vehicle damage characteristics in typical road accidents. The overall objective of the study was to evaluate the likely effect of vehicle damage on child restraint systems installed in vehicles in common use on New Zealand roads. The results presented here, relate specifically to vehicle deformation and encroachment as recorded at the accident scenes by traffic officers over a 3 month period. It would appear from the results of the study involving 406 vehicles, that the likelihood of encroachment into the passenger compartment as a result of an accident, is considerably less for the centre back seat position. This confirms the widely accepted view that it represents the most desirable location for a child safety restraint system with regard to possible injury caused by vehicle deformation.  相似文献   

18.
Cultural consensus analysis is a statistical method that can be used to assess participant responses to survey questions. The technique concurrently estimates the knowledge of each survey participant and estimates the culturally correct answer to each question asked, based on the existence of consensus among survey participants. The main objectives of this paper are to present the cultural consensus methodology and apply it to a set of median design and safety survey data that were collected using the Delphi method. A total of 21 Delphi survey participants were asked to answer research questions related to cross-median crashes. It was found that the Delphi panel had agreeable opinions with respect to the association of average daily traffic (ADT) and heavy vehicle percentage combination on the risk of cross-median crashes; relative importance of additional factors, other than ADT, median width, and crash history that may contribute to cross-median crashes; and, the relative importance of geometric factors that may be associated with the likelihood of cross-median crashes. Therefore, the findings from the cultural consensus analysis indicate that the expert panel selected to participate in the Delphi survey shared a common knowledge pool relative to the association between median design and safety. There were, however, diverse opinions regarding median barrier type and its preferred placement location. The panel showed a higher level of knowledge on the relative importance regarding the association of geometric factors on cross-median crashes likelihood than on other issues considered. The results of the cultural consensus analysis of the present median design and safety survey data could be used to design a focused field study of median safety.  相似文献   

19.
Developing sound or reliable statistical models for analyzing motor vehicle crashes is very important in highway safety studies. However, a significant difficulty associated with the model development is related to the fact that crash data often exhibit over-dispersion. Sources of dispersion can be varied and are usually unknown to the transportation analysts. These sources could potentially affect the development of negative binomial (NB) regression models, which are often the model of choice in highway safety. To help in this endeavor, this paper documents an alternative formulation that could be used for capturing heterogeneity in crash count models through the use of finite mixture regression models. The finite mixtures of Poisson or NB regression models are especially useful where count data were drawn from heterogeneous populations. These models can help determine sub-populations or groups in the data among others. To evaluate these models, Poisson and NB mixture models were estimated using data collected in Toronto, Ontario. These models were compared to standard NB regression model estimated using the same data. The results of this study show that the dataset seemed to be generated from two distinct sub-populations, each having different regression coefficients and degrees of over-dispersion. Although over-dispersion in crash data can be dealt with in a variety of ways, the mixture model can help provide the nature of the over-dispersion in the data. It is therefore recommended that transportation safety analysts use this type of model before the traditional NB model, especially when the data are suspected to belong to different groups.  相似文献   

20.
Better access management can improve highway safety by reducing potential crashes and conflicts. To make adequate access management decisions, it is essential to understand the impact of different access types on roadway safety, usually represented by the crash rate of a roadway segment. The objective of this paper is to propose a new access density definition reflecting the impact of traffic speed variation of different access types. The traffic speed variation was obtained from a microscopic traffic simulation software package TSIS-CORSIM. A sample roadway Temple Terrace Highway was selected to perform traffic simulation. Access Weight was obtained from traffic speed variation, and access density was obtained from access weight. The proposed access density was then compared with the existing definition by analyzing their correlations with crash rates on one suburban street in Temple Terrace, Florida. The comparison demonstrates that crash rates are more highly correlated with the proposed access density than that in the previous study, which is helpful for Federal Highway Administration (FHWA), United States Department of Transportation (USDOT), and transportation consulting companies to regulate the construction, management and design of roadway segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号