首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
H. Varela-Rizo  C. Merino 《Carbon》2010,48(12):3640-2641
Graphene oxide nano-platelets were produced from helical-ribbon carbon nanofibers by oxidation with KMnO4/H2SO4 and further exfoliation by ultrasonication. The KMnO4 to carbon nanofiber ratio is 1:1. TEM and AFM were used to characterize the samples. TEM shows individual nanocrystals with straight edges and SAED yields a hexagonal spot pattern arrangement, attributed to graphene layers. The thickness of the nanocrystals, measured by AFM, is approximately 1.7 nm, which corresponds to a single layer of hydrated graphene oxide.  相似文献   

2.
3.
Four high-aspect-ratio carbon nanomaterials were fabricated by template-directed liquid crystal assembly and covalent capture. By selecting from two different liquid crystal precursors (thermotropic AR mesophase, and lyotropic indanthrone disulfonate) and two different nanochannel template wall materials (alumina and pyrolytic carbon) both the shape of the nanocarbon and the graphene layer arrangement can be systematically engineered. The combination of AR mesophase and alumina channel walls gives platelet-symmetry nanofibers, whose basic crystal symmetry is maintained and perfected upon heat treatment at 2500 °C. In contrast, AR infiltration into carbon-lined nanochannels produces unique C/C-composite nanofibers whose graphene planes lie parallel to the fiber axis. The transverse section of these composite nanofibers shows a planar polar structure with line defects, whose existence had been previously predicted from liquid crystal theory. Use of solvated AR fractions or indanthrone disulfonate produces platelet-symmetry tubes, which are either cellular or fully hollow depending on solution concentration. The use of barium salt solutions to force precipitation of indanthrone disulfonate within the nanochannels yields continuous nanoribbons rather than tubes. Overall the results demonstrate that liquid crystal synthesis routes provide molecular control over graphene layer alignment in nanocarbons with a power and flexibility that rivals the much better known catalytic routes.  相似文献   

4.
Hisayoshi Ono 《Carbon》2006,44(4):682-686
High crystalline carbon nanofibers were prepared by using polymer blend technique. Naphthalene-based mesophase pitch (AR pitch) was dispersed finely in polymethylpentene matrix, spun by using a melt-blown spinning machine, stabilized at 160 °C in an oxygen atmosphere and carbonized at 900 °C in a nitrogen atmosphere. Bundles of the carbon nanofibers with ca. 100 nm in diameter were obtained after removal of polymethylpentene at the carbonization process. No impurity carbon was observed. The carbon nanofibers consisted of fine carbon crystallites with preferred orientation along the fiber axis. After heating to 3000 °C, the carbon crystallites grew drastically to have an interlayer spacing of 0.3367 nm and a crystallite thickness of 56.9 nm, respectively, with remarkable improvement of the preferred orientation of the crystallites. Advantages and disadvantages of the present method were discussed briefly.  相似文献   

5.
6.
J.K. Chinthaginjala 《Carbon》2009,47(14):3175-66
Carbon nanofibers (CNFs) were catalytically grown on Ni foam by decomposing ethylene in the presence of hydrogen. Variation of hydrogen concentration during CNF growth resulted in significant manipulation of the properties of a thin layer of CNFs. Addition of hydrogen retards carbon deposition and increases the surface area of the CNF layer because of formation of thinner fibers. The thickness of CNF layer shows an optimum at intermediate hydrogen concentrations. These effects contribute to the competitive adsorption of hydrogen and ethylene, influencing the availability of carbon on the Ni surface, which is necessary for both the formation of small Ni particles by fragmentation of polycrystalline Ni, as well as for CNF growth after formation of small particles. Furthermore, decreasing the carbon supply via adding hydrogen also delays deactivation by encapsulation of Ni particles. The thickness of the micro-porous C-layer between the Ni surface and the CNF layer decreases with hydrogen addition, at the expense of a slight loss in the attachment of the CNFs to the foam, supporting the proposition that CNFs are attached by roots in the C-layer. The addition of hydrogen after the initial CNF formation in ethylene only causes fragmentation of the C-layer, inducing significant loss of CNFs.  相似文献   

7.
Multiwalled carbon nanotube/Polyacrylonitrile (MWNT/PAN) composite nanofibers were prepared by electrospinning technique, whereby functionalized MWNTs (F-MWNTs) and pristine MWNTs (P-MWNTs) were used as reinforcing materials. The F-MWNTs were functionalized by Friedel-Crafts acylation, which introduced aromatic amine (COC6H4-NH2) groups onto the sidewall. The diameter range of the PAN nanofibers was 400-100 ± 50 nm. The beads formation was also observed when the amounts of MWNTs were increased in the PAN solution. The bead formation in F-MWNT/PAN composite nanofibers was less as compared to P-MWNT/PAN. The MWNTs were embedded within nanofibers and were well oriented along the nanofiber axis, as confirmed by transmission electron microscopy. The mechanical and thermal properties of the PAN nanofibers were improved by the incorporation of MWNTs.  相似文献   

8.
A low temperature chemical vapor deposition method is described for converting CH4 into high-quality carbon nanofibers (CNFs) using a Ni catalyst supported on either spinel or perovskite oxides in the presence of CO2. The addition of CO2 has a significant influence on CNF purity and stability, while the CNF diameter distribution is significantly narrowed. Ultimately, the addition of CO2 changes the CNF structure from fishbone fibers to thin multiwalled carbon nanotubes. A new “in situ” cooling principle taking into account dry reforming chemistry and thermodynamics is introduced to account for the structural effects of CO2.  相似文献   

9.
10.
The characteristics of carbonaceous materials deposited in fuel rich ethylene-oxygen mixtures on three types of palladium: foil, sputtered film, and nanopowder, are reported. It was found that the form of palladium has a dramatic influence on the morphology of the deposited carbon. In particular, on sputtered film and powder, tight ‘weaves’ of sub-micron filaments formed quickly. In contrast, on foils under identical conditions, the dominant morphology is carbon thin films with basal planes oriented parallel to the substrate surface. Temperature, gas flow rate, reactant flow ratio (C2H4:O2), and residence time (position) were found to influence both growth rate and type for all three forms of Pd. X-ray diffraction, high resolution transmission electron microscopy, temperature-programmed oxidation, and Raman spectroscopy were used to assess the crystallinity of the as-deposited carbon, and it was determined that transmission electron microscopy and X-ray diffraction were the most reliable methods for determining crystallinity. The dependence of growth on reactor position, and the fact that no growth was observed in the absence of oxygen support the postulate that the carbon deposition proceeds by combustion generated radical species.  相似文献   

11.
Chain confinement in electrospun nanofibers of PET with carbon nanotubes   总被引:1,自引:0,他引:1  
Huipeng Chen 《Polymer》2009,50(3):872-64
Composite nanofibers of poly(ethylene terephthalate), PET, with multiwalled carbon nanotubes (PET/MWCNT) were prepared by the electrospinning method. Confinement, chain conformation, and crystallization of PET electrospun (ES) fibers were analyzed as a function of the weight fraction of MWCNTs. For the first time, we have characterized the rigid amorphous fraction (RAF) in polymer electrospun fibers, with and without MWCNTs. The addition of MWCNTs causes polymer chains in the ES fibers to become more extended, impeding cold crystallization of the fibers, resulting in more confinement of PET chains and an increase in the RAF. The fraction of rigid amorphous chains greatly increased with a small amount of MWCNT loading: with addition of 2% MWCNTs, RAF increased to 0.64, compared to 0.23 in homopolymer PET ES fibers. Spatial constraints also inhibit the folding of polymer chains, resulting in a decrease in crystallinity of PET. For fully amorphous PET/MWCNT composites, MWCNTs do not affect the chain conformation of PET in the ES fibers. For cold crystallized PET/MWCNT composite nanofibers, more trans conformers were formed with the addition of MWCNTs. The increase of RAF (chain confinement) is associated with an increase of the concentration of the trans conformers in the amorphous region as the MWCNT concentration increases in the semicrystalline nanofibers.  相似文献   

12.
Electric arc-discharge single-wall carbon nanotubes are annealed between 1600 and 2800 °C under argon flow. Their stability and evolution are studied by coupling TEM, X-ray diffraction and Raman spectroscopy. The first modifications appear at 1800 °C with a significant decrease of the crystalline order. It is due to SWNTs coalescence leading to smaller bundles but with an increase of the tube diameters from 2 to 4 nm. From 2200 °C, SWNTs progressively disappear to the benefit of MWNTs having at first two to three carbon layers then reaching 7 nm external diameter. The possible mechanisms responsible for the SWNTs coalescence and instability and their transformation in MWNTs are discussed.  相似文献   

13.
A route to producing multi-walled carbon nanotubes (MWCNTs) was reported, in which polyacrylonitrile microspheres (PANMSs) were assembled into one-dimensional strings of carbon spheres and transformed to carbon nanotubes at 1000 °C. It was found that the diameters of the MWCNTs are uniform and correlated with the size of the PANMSs used. Structures of intermediate products obtained by stopping the reaction have been examined by high-resolution transmission electron microscopy. The observations indicate that the formation of MWCNTs follows a different mechanism from the well-studied vapor–liquid–solid mode. It involves a direct self-assembly and solid-state structural transformation of PANMSs under the promotion of nitrogen atoms as shown by the X-ray photoelectron spectra of the resulting samples. On the basis of these observations, a sphere-string-tube mechanism was proposed for the MWCNT formation.  相似文献   

14.
The electrical and mechanical properties of the same hybrid carbon nanotube before and after removal of the core Ga-doped ZnS semiconductor filling have been analysed inside a transmission electron microscope (TEM) using a conductive atomic force microscope - TEM system. It is found that the encapsulated material can substantially change the mechanical response of the turbostratic carbon tube container. Furthermore, because the extent of filling is operator-controlled, this provides a simple way to change on-demand the stiffness of hybrid carbon nanotubes.  相似文献   

15.
16.
Supported-NiO catalysts were tested in the synthesis of carbon nanotubes and carbon nanofibers by catalytic decomposition of methane at 550 °C and 700 °C. Catalytic activity was characterized by the conversion levels of methane and the amount of carbons accumulated on the catalysts. Selectivity of carbon nanotubes and carbon nanofiber formation were determined using transmission electron microscopy (TEM). The catalytic performance of the supported-NiO catalysts and the types of filamentous carbons produced were discussed based on the X-ray diffraction (XRD) results and the TEM images of the used catalysts. The experimental results show that the catalytic performance of supported-NiO catalysts decreased in the order of NiO/SiO2 > NiO/HZSM-5 > NiO/CeO2 > NiO/Al2O3 at both reaction temperatures. The structures of the carbons formed by decomposition of methane were dependent on the types of catalyst supports used and the reaction temperatures conducted. It was found that Al2O3 was crucial to the dispersion of smaller NiO crystallites, which gave rise to the formation of multi-walled carbon nanotubes at the reaction temperature of 550 °C and a mixture of multi-walled carbon nanotubes and single-walled carbon nanotubes at 700 °C. Other than NiO/Al2O3 catalyst, all the tested supported-NiO catalysts formed carbon nanofibers at 550 °C and multi-walled carbon nanotubes at 700 °C except for NiO/HZSM-5 catalyst, which grew carbon nanofibers at both 550 °C and 700 °C.  相似文献   

17.
Thin carbon nanotubes were synthesized by catalytic decomposition of CH4 over MoCoMgO catalyst. We obtained bundles of ordered nanotubes under hydrogen gas and disordered nanotubes under nitrogen gas over the same catalyst. The formation mechanism of nanotube bundles was discussed. The number of the tube walls was 2–5 with the corresponding diameters of 3–6 nm. We obtained a high production yield of 500 wt.% for the thin carbon nanotubes compared to the weight of the supplied catalyst. Moreover the duration of the hydrogen pretreatment was also found to have different effects on the yield of nanotubes under different carrier gases.  相似文献   

18.
19.
Kazunori Kuwana 《Carbon》2005,43(10):2088-2095
Catalyst nanoparticles play an important role in the synthesis of carbon nanotubes. In this paper, we present a two-equation model that can predict the formation process of iron nanoparticles from ferrocene fed into a CVD reactor. The model, combined with an axisymmetric two-dimensional computational fluid dynamics (CFD) simulation, includes the mechanism of nucleation and surface growth of an iron particle and bi-particle collision. The model predicts that the diameter of a particle will increase with an increase in the reaction temperature or the radial distance from the center of the reactor. Iron particles may deposit on the reactor wall; our model predicts that the thickness of the layer consisting of deposited iron particles will decrease with an increase in the axial distance from the entrance. The first prediction was validated by experimental observations reported by other researchers. In addition to the CFD simulation, a dimensional analysis was conducted to find pi-numbers that govern the process of particle formation; three pi-numbers were identified. Furthermore, one-dimensional governing equations were obtained under the assumptions of constant diffusion coefficient and collision frequency function, and solutions for particle diameter were obtained in qualitative agreement with the earlier CFD simulations.  相似文献   

20.
Carbon nanofiber growth on palladium particles from ethylene-oxygen mixtures was investigated with respect to thermal history. Electron microscopy, combined with focused ion beam cross-sectioning show particles sinter quickly, but can be stabilized by the addition of a short carbon deposition step at a temperature below the general reaction temperature. This step generates a thin layer of carbon on the catalyst which reduces sintering once the temperature is raised to the optimal reaction temperature. For example, high temperature (e.g. 500 °C) catalyst pre-treatment leads to catalyst particle sintering, and subsequent fiber growth produces large diameter fibers. In contrast, small diameter fibers form on catalyst particles pretreated at low temperature (ca. 350 °C), even if the fibers are grown at a temperature at which deposition rates are faster (e.g. 550 °C). These results led to the development of unique multiple temperature fiber growth protocols that produce smaller diameter fibers while improving the deposition rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号