共查询到20条相似文献,搜索用时 62 毫秒
1.
IA-SVM算法在网络入侵检测中的研究 总被引:1,自引:0,他引:1
研究网络入侵检测问题,网络入侵具有不确定性、多变性和动态性,传统检测方法不能很好的识别这种特性,且传统支持向量机参数采优化方法易出现参数选择不当,导致网络入侵检测准确率低.为了提高网络入侵检测准确率,将免疫算法引入到网络入侵检测中,用其优化支持向量机参数.方法将网络入侵检测数据输入到支持向量机中学习,将支持向量机参数作为免疫算法的抗体,把网络入侵检测准确率作为免疫算法抗原,通过抗体和抗原相互作用得到最优的支持向量机参数,然后对网络入侵数据检测得到入侵检测结果,最后通过DRAP网络入侵数据集对该方法进行仿真.仿真结果表明,相对传统网络入侵检测方法,新方法学习速度快,检测准确率高,很好地解决了传统检测方法准确率低的难题,为网络安全提供了保障. 相似文献
2.
PCA-SVM在网络入侵检测中的仿真研究 总被引:2,自引:0,他引:2
研究网络安全问题,针对网络入侵数据是一种小样本、高维和冗余数据,传统检测方法无法进行很好降维且基于大样本数据,因此入侵检测率低.为了提高网络入侵检测率和网络安全,提出一种主成分分析(PCA)的支持向量机(SVM)网络入侵检测方法(PCA-SVM).PCA-SVM首先通过PCA对网络入侵原始数据进行维数和消除冗余信息处理,减少了支持向量机的输入,采用粒子算法对支持向量机参数进行优化,获得最优网络入侵支持向量机检测模型,最后最优支持向量机模型对网络入侵数据进行测试.采用网络数据集在Madab平台上对PCA-SVM算法进行仿真,结果表明,采用PCA-SVM加快了网络入侵检测速度,提高了检测率,降低了网络入侵漏报率,为网络入侵检测提供了一种实时检测工具. 相似文献
3.
为了提高网络入侵检测效果以加强网络安全性,提出一种网络状态特征和支持向量机(SVM)参数联合选择的网络入侵检测模型(PSO-SVM).以网络入侵检测正确率作为目标,特征子集和SVM参数作为约束条件建立数学模型,通过粒子群优化算法对模型进行求解,找到最优特征子集和SVM参数,利用KDD Cup 99数据集对算法性能进行测试.测试结果表明,相对于其它入侵检测算法,PSO-SVM可以找到更优特征子集和SVM参数,加快了检测速度,有效地提高了网络入侵检测正确率,为网络入侵检测提供了一种新的研究思路. 相似文献
4.
为了提高网络入侵检测的准确性与检测效率,弥补由单一优化算法带来的计算精度低、易陷入局部极值等不足,将差分算法的思想引入量子粒子群算法中,提出了一种改进量子粒子群算法(Improved Quantum Particle Swarm Optimization algorithm,IQPSO)和改进差分算法(Improved Difference Evolution,IDE)相融合的IQPSO-IDE算法,并将IQPSO-IDE算法对支持向量机(Support Vector Machine,SVM)的参数进行优化。以此为基础,设计了一种基于IQPSO-IDE算法的网络入侵检测方法。实验结果表明,IQPSO-IDE算法与传统的QPSO、GA-DE、QPSO-DE算法相比,不仅在效率上有了明显的改善,而且在网络入侵检测的正确率上分别提高了5.12%、3.05%、2.26%,在误报率上分别降低了3.31%、1.54%、0.93%,在漏报率上分别降低了1.26%、0.73%、0.52%。 相似文献
5.
网络入侵检测一直是计算机网络安全领域的研究热点,当前网络面临着诸多的安全隐患。为了提高网络入侵检测的准确性,首先对粒子群优化(Particle Swarm Optimization,PSO)算法进行了改进,然后利用改进的PSO算法(IPSO算法)对支持向量机(Support Vector Machine,SVM)的参数进行了优化,并在此基础上设计了一种新型的基于IPSO-SVM算法的网络入侵检测方法。实验结果表明,相比于经典的SVM和PSO-SVM算法,IPSO-SVM算法不仅 明显改善了网络训练的收敛速度,而且其网络入侵检测的正确率分别提高了7.78%和4.74%,误报率分别降低了3.37%和1.19%,漏报率分别降低了1.46%和0.66%。 相似文献
6.
赵晖 《计算机工程与应用》2013,49(18):73-77
入侵检测数据往往含有大量的冗余、噪音特征及部分连续型属性,为了提高网络入侵检测的效果,利用邻域粗糙集对入侵检测数据集进行属性约简,消除冗余属性及噪声,也避免了传统粗糙集在连续型属性离散化过程中带来的信息损失;使用粒子群算法优化支持向量机的核函数参数和惩罚参数,以避免靠主观选择参数带来精度较低的风险,进一步提高入侵检测的性能。仿真实验结果表明,该算法能有效提高入侵检测的精度,具有较高的泛化性和稳定性。 相似文献
7.
针对传统遗传算法在网络入侵检测中存在分类复杂的问题,提出结合条件熵遗传算法(CEGA)和支持向量机(SVM)的网络入侵检测算法。将入侵特征的抽取和分类模型的建立进行联合优化,同时利用训练数据的统计特性指导入侵特征的抽取,并对特征空间进行线性变换,得到优化的特征子集和分类模型,在提高分类检测率的同时降低检测时延。 相似文献
8.
9.
一种基于改进支持向量机的入侵检测方法研究 总被引:1,自引:0,他引:1
提出基于粒子群优化(Particle Swarm Optimization,PSO)算法和支持向量机(Support Vector Machines,SVM)的入侵检测方法,为优化SVM性能,使用PSO的全局搜索特性寻找SVM的最优参数[C]和[σ];为避免PSO算法陷入局部最优,引入变异操作,找到最优参数组合后进行基于PSO_SVM入侵检测算法的训练和检测,解决了入侵检测系统准确度难题。仿真实验表明该方法的检测率为92.8%,误报率为6.911 9%,漏报率为9.708 7%,对KDDCUP竞赛的最佳结果有一定程度的提高,实验结果验证了该算法的有效性和可行性。 相似文献
10.
针对传统机器学习方法在处理非平衡的海量入侵数据时少数类检测率低的问题,提出一种融合生成式对抗网络(GAN)、粒子群算法(PSO)和极限学习机(ELM)的入侵检测(GAN-PSO-ELM)方法。对原始网络数据进行预处理,利用GAN并采用整体类扩充的方式对数据集进行少数类样本扩充。在扩充后的平衡数据集上,利用PSO算法优化ELM的输入权重与隐含层偏置,并建立入侵检测模型。在NSL-KDD数据集上进行仿真实验。实验结果表明,与SVM、ELM、PSO-ELM方法相比,GAN-PSO-ELM不仅具有较高的检测效率,而且在整体检测准确率上平均提高了3.74%,在少数类R2L和U2R上分别平均提高了28.13%和16.84%。 相似文献
11.
入侵检测是近十几年来出现的一种主动保护自己以免受黑客攻击的新型网络安全技术。入侵检测被认为是防火墙后的第二道安全阀门,文章从神经网络特点和机制入手,介绍了神经网络的基本概念及其算法理论,提出基于神经网络入侵检测方法,并给出了基于神经网络的网络入侵检测系统模型结构。仿真实验结果表明,运用神经网络检测入侵,可以达到较高的准确检测率,是一种有效的入侵检测手段。 相似文献
12.
针对网络攻击的复杂性和分布性,提出了一种基于网络的分布式入侵检测系统,并对该系统的系统结构及其功能进行了详细的分析研究,最后对其特点作了简要的总结. 相似文献
13.
基于PCA的PSO-BP入侵检测研究 总被引:1,自引:0,他引:1
为了提高入侵检测系统的检测率和降低误报率,提出变惯性因子粒子群算法优化BP神经网络的权值和阈值方法,融合BP局部搜索和PSO的全局寻优能力。通过反复训练学习,当训练误差达到精度范围内,用优化过的BP网络进行仿真实验。在数据预处理中,提出采用主成分分析方法进行特征提取,减少学习过程时间和加速收敛。通过实验分析和比较,该算法提高了入侵检测的正确率和泛化能力,降低了误报率和漏报率,加快了收敛速度,迭代次数少。 相似文献
14.
目前,入侵检测系统面临数据量大、内存等系统资源不足的问题.将两阶段聚类算法应用于入侵检测,设计了基于数据流的入侵检测系统模型.实验结果表明,该系统可以取得较高的检测率和较低的误报率,具有自适应性和可扩展性,并有效降低了对内存资源的需求. 相似文献
15.
16.
研究网络安全问题,针对网络受到非法用户入侵,破坏系统的正常工作,传统网络初始权值凭经验确定,易出现初始权值确定不当,导致网络入侵检测准确率低的难题.为了提高网络入侵检测的准确率,提出一种遗传神经网络的网络入侵检测方法.方法把神经网络和遗传算法结合起来,把网络初始权值作为遗传算法的一个种群,把网络检测准确率作为遗传算法的目标函数,通过遗传算法种群的"优胜劣汰"机制搜索到神经网络算法的全局最优初始权值,采用最优权值对网络入侵数据进行检测,得到最优网络入侵检测结果.结果证明,方法学习速度快、检测准确率高、漏报率与误报率低,克服传统网络检测方法不准确的缺陷. 相似文献
17.
王彪 《数字社区&智能家居》2006,(14)
分析了目前网络入侵检测技术的现状及存在的问题,设计了一种基于代理的分布式网络入侵检测系统,并分别从主机Agent、分析Agent和中心Agent的实现方法进行了详细讨论,最后展望了当前入侵检测系统的研究内容与发展方向。 相似文献
18.
在入侵检测中,模式匹配算法的改进对检测速度的提高是有限的,不是解决问题的根本策略.本文设计了一个基于硬件的入侵检测系统原型,系统采用基于网络处理器的硬件策略取代传统入侵检测的软件策略,将入侵检测的主要工作,如数据采集及过滤、数据包的调度、多模式匹配等用硬件实现.它们都是在基于FPGA上实现的,并可以根据实际需要增加硬件和自定义指令来提高系统性能.测试表明该系统的性能与传统方法相比有显著的提高,很好地解决了入侵检测中的速度瓶颈问题. 相似文献
19.
王彪 《数字社区&智能家居》2006,(5):39-41
分析了目前网络入侵检测技术的现状及存在的问题,设计了一种基于代理的分布式网络入侵检测系统。并分别从主机Agent、分析Agent和中心Agent的实现方法进行了详细讨论,最后展望了当前入侵检测系统的研究内容与发展方向。 相似文献
20.
分析了入侵检测技术在计算机网络安全技术中的作用和地位,同时将BP神经网络算法应用于入侵检测当中,建立了基于BP神经网络的智能入侵检测系统.该系统能够通过数据包捕获模块实时抓取网络中传输的数据包,之后通过协议分析模块进行数据包所使用的数据协议的识别,从而能够在BP神经网络模块分别针对采用TCP、UDP、ICMP这三种网络数据传输协议的数据包进行处理.从本文中列出的该系统在Matlab07上的仿真结果可以看出:基于BP神经网络的智能入侵检测系统能够有效地提升入侵检测识别率. 相似文献