首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
提供了一个较大规模的基于RGB-D摄像机的人体复杂行为数据库DMV (Dynamic and multi-view) action3D,从2个固定视角和一台移动机器人动态视角录制人体行为。数据库现有31个不同的行为类,包括日常行为、交互行为和异常行为类等三大类动作,收集了超过620个行为视频约60万帧彩色图像和深度图像,为机器人寻找最佳视角提供了可供验证的数据库。为验证数据集的可靠性和实用性,本文采取4种方法进行人体行为识别,分别是基于关节点信息特征、基于卷积神经网络(Convolutional neural networks,CNN)和条件随机场(Conditional random field,CRF)结合的CRFasRNN方法提取的彩色图像HOG3D特征,然后采用支持向量机(Support vector machine,SVM)方法进行了人体行为识别;基于3维卷积网络(C3D)和3D密集连接残差网络提取时空特征,通过softmax层以预测动作标签。实验结果表明:DMV action3D人体行为数据库由于场景多变、动作复杂等特点,识别的难度也大幅增大。DMV action3D数据集对于研究真实环境下的人体行为具有较大的优势,为服务机器人识别真实环境下的人体行为提供了一个较佳的资源。  相似文献   

2.
为减少背景特征对行为识别的影响,提出一种基于前景置信的人体行为识别方法。该方法在基于稠密时空兴趣点的行为识别基础上,结合像素前景置信估计对特征描述器进行加权分类,再利用词袋模型判别行为。融合运动、外观及视觉显著性的像素前景置信的引入,提高了算法处理复杂背景视频的能力。该方法在UCF50和HMDB51视频库中进行训练和测试,平均识别率为66.4%。  相似文献   

3.
4.
提出一种新的人体行为识别特征提取方法。针对Radon变换对缩放敏感的问题,采用改进的Radon变换提取运动人体区域最小外接矩形的Radon变换特征,并采用隐马尔可夫模型进行行为识别。该方法提取特征时不再需要进行规范化处理,提高了特征的鲁棒性。实验结果表明,该方法对噪声不敏感、计算简单、识别效率高。  相似文献   

5.
3D模型检索技术综述   总被引:27,自引:9,他引:27  
全面地综述了3D模型检索技术,介绍了3D模型检索界面和一个3D模型检索系统,并对该技术领域的未来发展进行了总结和展望.  相似文献   

6.
动作识别使得机器能够对人体动作的意图进行判别理解,进而实现高效的人机交互。提出一种肢体角度模型,实现在三维空间中对人体动作进行表示,该模型具有一定的不变性,计算复杂度低。针对传统的基于混合高斯的隐马尔可夫模型(GMM-HMM)的动作识别,提出深度置信网络模型(DBN)和隐马尔可夫模型相结合的动作识别模型,构建了一种非线性的基于条件限制玻尔兹曼机(CRBM)的DBN深度学习模型,深层次结构使其建模能力更强,且能够结合历史信息建模,更适用于动作识别。实验表明该算法具有较高的识别结果。  相似文献   

7.
针对三维卷积神经网络无法高效地提取时空特征,提出了一种基于SR3D网络的人体行为识别算法。首先,将三维残差模块的BN层和Relu激活函数放置在三维卷积层之前,更好地提取时空特征;然后,将改进的三维残差块和SE模块组合成SR3D模块,增加重要通道的利用率,提高了网络的识别率。在UCF-101和自制异常行为数据集上进行了大量实验结果表明,SR3D算法分别达到了47.7%和83.6%的识别率(top-1精度),与三维卷积网络(C3D)相比分别提高了4.6和17.3个百分点。  相似文献   

8.
针对当前骨骼数据信噪比低及特征信息不足的问题,提出人体关键关节构建时空金字塔模型的动作识别方法.该算法利用人体骨架关键关节构建空间域金字塔特征,保留骨架铰链系统的空间结构;利用多层级叠加协方差,构建时序金字塔特征,解决需要预处理视频序列长度的问题.在MSR-Action3D和UTKinect数据集上的实验结果表明,该方法准确率高、实时性好,可广泛应用于行为识别的各个领域.  相似文献   

9.
针对基于双流卷积神经网络的人体行为识别准确率不高,不能充分利用时间维度的信息问题,提出一种基于3D双流卷积和门控循环单元(GRU)网络的人体行为识别模型。将3D卷积神经网络引入到双流卷积神经网络中,在双流卷积神经网络的空间流和时间流中分别使用3D卷积神经网络提取视频的时空信息;融合3D双流卷积神经网络提取到的时空特征,形成有时间顺序的时空特征流;将时空特征流输入到具有记忆信息能力的GRU网络中递归学习时间维度的长时序列特征并利用线性SVM分类器进行人体行为识别。在行为识别数据集UCF101上的实验结果表明,该模型充分地利用了视频的时间维度信息,识别率为92.2%,优于其他人体行为识别算法。  相似文献   

10.
提出了一种以人的动作序列图像的轮廓为特征、基于隐条件随机场的行为识别方法。首先,利用背景差分法和阴影消除技术提取运动人体轮廓。星型骨架方法只采用单一质心一边界距离来描述人体轮廓,因此对轮廓的局部特征描述能力较弱。定义一种新的基于距离组的轮廓描述方法,它将时变的2D轮廓形状转换为对应的1D距离向量。最后利用判别隐条件随机场对行为进行训练和识别。实验结果表明,本方法的正确识别率达到91. 4%以上,识别结果较为理想。  相似文献   

11.
置信度判别嵌入式隐马尔可夫模型人脸识别   总被引:2,自引:0,他引:2  
为了提高人脸识别率,提出了一种优化置信度的判别嵌入式隐马尔可夫(EHMM)人脸识别方法。提出的方法基于假设检验,通过最小化检验错误率得到优化置信度判别式训练准则。在优化置信度判别式训练准则的前提下,通过参数估计求解判别式转换矩阵,提取出具有判别性、低维度的图像特征,确保观察样本能正确地分配到其对应的模型状态,以提高所训练出的EHMM模型的正确识别率。理论分析证明了优化置信度判别式训练准则的有效性,详细的实验及与现有方法的比较结果表明,提出的识别方法具有更好的识别性能。  相似文献   

12.
一种改进的隐马尔可夫模型在语音识别中的应用   总被引:1,自引:0,他引:1  
提出了一种新的马尔可夫模型——异步隐马尔可夫模型.该模型针对噪音环境下语音识别过程中出现丢失帧的情况,通过增加新的隐藏时间标示变量Ck,估计出实际观察值对应的状态序列,实现对不规则或者不完整采样数据的建模.详细介绍了适合异步HMM的前后向算法以及用于训练的EM算法,并且对转移矩阵的计算进行了优化.最后通过实验仿真,分别使用经典HMM和异步HMM对相同的随机抽取帧的语音数据进行识别,识别结果显示在抽取帧相同情况下异步HMM比经典HMM的识别错误率低.  相似文献   

13.
基于HMM方法的银行票据自动识别   总被引:2,自引:0,他引:2  
利用隐态马尔可夫模型(HMMs),对银行票据中金额的大小写数据识别问题进行了研究.主要内容包括建立新颖的文字分刻算法;设计HMM训练和识别算法.在HMM系统中,将使用频率比较高的手写体错别字和同音字作为不同的字符类来处理;同时在HMM的训练过程中,提出了平滑参数的新方法.实验结果表明,该方法在实践中是可行的,在银行票据自动识别中有很好的应用前景.  相似文献   

14.
基于HMM的单样本可变光照、姿态人脸识别   总被引:2,自引:1,他引:2  
提出了一种基于HMM的单样本可变光照、姿态人脸识别算法.该算法首先利用人工配准的训练集对单张正面人脸输入图像与Candide3模型进行自动配准,在配准的基础上重建特定人脸三维模型.对重建模型进行各种角度的旋转可得到姿态不同的数字人脸,然后利用球面谐波基图像调整数字人脸的光照系数可产生光照不同的数字人脸.将产生的光照、姿态不同的数字人脸同原始样本图像一起作为训练数据,为每个用户建立其独立的人脸隐马尔可夫模型.将所提算法对现有人脸库进行识别,并与基于光照补偿和姿态校正的识别方法进行比较.结果显示,该算法能有效避免光照补偿、姿态校正方法因对某些光照、姿态校正不理想而造成的识别率低的情况,能更好地适应光照、姿态不同条件下的人脸识别.  相似文献   

15.
基于连续隐马尔可夫模型的人脸识别方法   总被引:1,自引:0,他引:1  
提出了一种基于连续隐马尔可夫模型的人脸图像识别方法,主要内容包括以下方面:①由于奇异值向量具有稳定性.转置不变性等特点,对归一化的人脸图像,采用奇异值分解抽取人脸图像特征作为观察值序列;②在人脸识别中应用连续隐马尔可夫模型,采用双高斯概率密度函数训练,建立HMM模型,再利用建好的HMM模型进行识别.实验结果显示,所提出的方法减少了数据计算量,运行速度快,并提高了识别率,完全满足人脸识别系统实时性要求.  相似文献   

16.
消除溢出问题的精确Baum-Welch算法   总被引:4,自引:0,他引:4       下载免费PDF全文
Baum-Welch算法是在语音领域中用于HMM(hidden Markov model)模型参数训练的最基本方法之一.但它在多样本训练时存在着严重的上、下溢问题,需要不断地人工介入来调整中间参数.该文提出了一种新的能消除上、下溢问题的Baum-Welch改进算法.该算法不但摆脱了人工介入,保证了计算的精度,而且不会带来过大的计算和存储要求.实验结果表明了这种新算法的有效性.  相似文献   

17.
针对现有技术中电动汽车充电平台智能语音识别能力差的问题,设计了新型的电动汽车充电平台,该系统平台包括计算机网络终端、电网调度中心以及充电桩等,能够实现上层管理中心的语音识别,电路包括语音采集模块、语音辨别模块和控制驱动模块等,设计出基于UniSpeech-SDA80D51芯片的语音识别电路,提高了语音识别能力,并构建出隐马尔可夫模型(hidden Markov model,HMM)和人工神经元网络(artificial neural network,ANN)相融合的模型,实现了智能语音识别数据信息的挖掘与处理,进而增强了语音识别系统的性能。试验表明,该研究在不同噪音下的识别率,其中在20 dB的噪音下识别率为88.3%。该方法提高了语音识别和挖掘能力。  相似文献   

18.
为了进行复杂交互动作识别,提出基于深度信息的特征学习方法,并使用两层分类策略解决相似动作识别问题.该方法从频域的角度分析深度图像动作序列,提取频域特征,利用VAE对特征进行空间特征压缩表示,建立HMM模拟时序变化并进行第一层动作识别.为了解决相似动作识别问题,引入三维关节点特征进行第二层动作识别.实验结果表明,两种特征在动作数据集SBU-Kinect上能够有效地表示姿态含义,策略简单有效,识别准确率较高.  相似文献   

19.
基于HMM的联机汉字识别系统及其改进的训练方法   总被引:5,自引:1,他引:4  
本文描述了一个基于HMM模型的联机汉字识别系统的设计思想与实现方法。系统以联机汉字的笔段序列作为观察序列,采用带有多跨越的模型结构消除自由书写汉字笔段序列的冗余与丢失问题。HMM模型的训练是本系统设计的一个重要问题,针对复杂HMM模型参数训练容易收敛于局部最小的情况,本文结合联机汉字识别的特点,提出了一种利用“引导模型”进行训练的改进方法,避免了训练过程收敛于局部最小点的发生。经过大量样本的训练,本系统对规范书写汉字和自由书写汉字均取得了比较令人满意的结果。  相似文献   

20.
秦伟  韦岗 《微计算机信息》2006,22(22):301-303
提出一种捆绑子空间分布隐马尔可夫模型的训练方法。该方法利用多变量相关系数将语音信号的特征向量进行子空间划分;利用k均值算法捆绑特征向量子空间的高斯分布,得到子空间高斯分布的原型,减少模型的参数。通过实验,用该方法训练的捆绑子空间隐马尔可夫模型,不仅提高了识别器的精确度和识别速度,而且节省了存储空间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号