共查询到16条相似文献,搜索用时 83 毫秒
1.
2.
LiNi0.8Co0.2O2表面包覆MgO及其性能 总被引:4,自引:0,他引:4
锂离子蓄电池正极材料和电解液之间的恶性相互作用是引起正极材料和电池性能劣化的重要原因。用沉淀法在Ni0,8Co0.2(OH)2前驱体表面包覆一层Mg(OH)2,再与LiOH共混热处理,制备出表面包覆MgO的LiNi0.8Co0.2O2。用X光电子能谱、扫描电镜和X射线衍射分析对包覆前后的Ni0.8Co0.2O2与LiNi0.8Co0.2O2的结构进行了表征。充放电测试结果表明,经表面修饰处理后,LiNi0.8Co0.2O2正极材料的初始放电比容量略有降低,但循环稳定性显著改善。研究结果表明,表面修饰处理可以有效地抑制正极材料与电解液之间的恶性相互作用,是改善锂离子蓄电池正极材料循环性能的有效途径。 相似文献
4.
5.
锂离子蓄电池LiNi0.4Co0.2Mn0.4O2正极材料的合成及性能 总被引:1,自引:0,他引:1
采用共沉淀前驱体法合成锂离子蓄电池正极材料LiNi0.4Co0.2Mn0.4O2,针对材料的制备条件、形貌、密度、晶体结构以及电化学活性方面进行了较系统的研究。对材料进行扫描电子显微镜(SEM)、X射线衍射光谱(XRD)分析以及电性能测试,结果表明样品颗粒均匀,为类球形,振实密度为1.8g/cm3;衍射峰与标准的a-NaFeO2层状结构完全对应,为层状嵌锂复合氧化物;LiNi0.4Co0.2Mn0.4O2在电压2.5~4.3V范围内表现出较好的电化学性能,循环17次后仍保持大约150mAh/g,具有很好的发展前景。 相似文献
6.
用共沉淀法合成了球形Ni0.8Co0.2(OH)2,然后将其与LiOH·H2O混合后在不同高温合成条件下制得LiNi0.8Co0.2O2。系统地研究了保温时间、Li/(Ni Co)配比、焙烧温度对合成的Li-Ni0.8Co0.2O2材料的电化学性能的影响。电化学充放电循环测试结果表明:在优化条件下制得的LiNi0.8Co0.2O2材料表现出优良的电化学性能,其首次充电容量达到219.3mAh/g,首次放电容量达到195.4mAh/g,首次充放电效率89.1%,循环20次后放电容量仍能保持在185mAh/g。 相似文献
7.
总结了聚合物锂离子蓄电池正极材料的研究现状,通过研究提出了一种新型正极改性材料LiNi0.8Co0.2O2的制备工艺,该材料在聚合物锂离子蓄电池中的应用研究表明,LiNi0.8Co0.2O2改善了材料的放电性能并降低了电池成本。本研究将凝胶-溶胶法和喷雾干燥法相结合,采用高分子化合物RB-1(由多元有机酸和高分子聚合物例如明胶和淀粉等组成)来调整溶胶体,结合煅烧过程中对温度和时间的控制,研究出溶胶-喷雾干燥-煅烧的制备工艺。实验以差热分析-热重分析(DTA-TGA)法来分析喷雾干燥的过程和作用,以X射线衍射(XRD)分析材料的结构,以容量测试来分析材料的放电性能。所得LiNi0.8Co0.2O2具有优良的层状结构,应用于聚合物锂离子蓄电池中,可使电池的可逆比容量达到180mAh/g,并保持良好的稳定性和循环寿命。 相似文献
8.
锂离子蓄电池正极材料LiNi0.8-xCo0.2YxO2的制备及性能 总被引:2,自引:2,他引:2
采用溶胶凝胶法制备了锂离子蓄电池正极材料LiNi0.8-xCo0.2YxO2(x=0.00,0.03,0.04,0.05)。分别用X射线衍射光谱法(XRD)、充放电实验、交流阻抗等测试方法研究了稀土元素钇的掺入对LiNi0.8Co0.2O2结构及电化学性能的影响。结果表明钇的掺入减少了材料中阳离子的混排,稳定了LiNi0.8Co0.2O2的层状结构,提高了首次充放电效率和循环性能,抑制了循环过程中电池阻抗的增加。 相似文献
9.
用溶胶凝胶法在LiNi0.8Co0.2O2表面包覆SiO2 总被引:12,自引:1,他引:12
锂离子蓄电池正极材料和电解液之间的恶性相互作用是引起正极材料和电池性能劣化的重要原因。以正硅酸乙酯为原料 ,采用溶胶凝胶法在LiNi0 .8Co0 .2 O2 表面包覆上一层稳定的SiO2 层。用X光电子能谱、扫描电镜和X光衍射分析等手段对包覆前后LiNi0 .8Co0 .2 O2 的结构进行了表征。研究表明 ,SiO2 包覆层的存在减少了LiNi0 .8Co0 .2 O2 和电解液的直接接触 ,有效地抑制了高温下LiNi0 .8Co0 .2 O2 与电解液的恶性相互作用。经表面修饰处理后 ,LiNi0 .8Co0 .2 O2 正极材料在高温下 ( 6 0℃ )的实际比容量显著提高 ,充放电循环稳定性显著改善 ,制成的电池自放电速率显著减小。本文的研究结果表明 ,表面修饰处理是改善锂离子蓄电池正极材料高温性能的有效途径。 相似文献
10.
采用共沉淀-高温固相合成工艺,将20%(质量分数)的Co和10%(质量分数)的Mn同时掺入,成功地在空气气氛中合成出了层状结构的多元正极材料LiNi0.7Co0.2Mn0.1O2.循环伏安曲线的测试结果表明,Co和Mn的同时掺入抑制了LiNiO2充放电过程中的相变,提高了材料的循环性能.在0.2 C倍率下2.8~4.3 V电压区间内进行充放电测试,结果表明,850℃下处理得到的样品前10次容量几乎没有衰减,均在150 mAh/g左右,循环50次后容量仍然保持在140 mAh/g以上.将充电截止电位提高至4.4 V后,前10次的放电比容量可达170 mAh/g. 相似文献
11.
采用控制结晶法合成了Ni0.8Co0.2(OH)2,然后将其与Mg(NO3)2和LiNO3作用,生成胶状物前驱体,再经高温固相反应制备了LiNi0.8MgxCo0.2-xO2。由此得到的正极材料LiNi0.8MgxCo0.2-xO2 经X射线衍射、循环伏安、充放电实验等技术测量,分别对其结构形貌、电化学性能及电池的容量特性,进行了分析和讨论。结果表明:对LiNi1-xCoxO2掺入Mg2 增强了材料层状结构的稳定性,改善了其循环稳定性能。LiNi0.8Mg0.045Co0.155O2正极材料首次放电比容量达174 mAh/g, 30次循环充放电后保持初始放电比容量的93.8% 。 相似文献
12.
以球形Ni(OH)2、Co3 O4和LiOH· H2O为原料,采用改进的两步固相法制备正极材料LiNi0.8 Co0.2 O2.考察了预处理温度和时间对材料结构、形貌和性能的影响.优化条件为:将Ni(OH)2和Co3O4在750 ℃下预处理4h,再加入LiOH·H2O,在750℃焙烧15 h.在此条件下制备的材料为纯相α-NaFeO2型层状结构,没有杂质,电化学性能良好.在2.8~4.3 V充放电,0.1C首次放电比容量约为184 mAh/g;经过50次不同倍率的循环,0.1C放电比容量仍有164.7 mAh/g. 相似文献
13.
锂离子电池正极材料LiNi0.5Co0.5O2的制备及性能 总被引:3,自引:1,他引:3
LiNixCo1-xO2(0≤x≤1)系是一种很有希望的新型的锂离子电池电极材料.以Li2CO3,NiO,Co3O4为原料,经过造粒的预处理,固相反应合成了锂离子电池正极材料LiNi0.5Co0.5O2.研究了不同的合成条件对产物结构、性能的影响.结果表明,反应温度、时间、Li/(Ni+Co)摩尔比等因素对产物的结构、电性能有一定的影响.XRD分析表明合成的产物LiNi0.5Co0.5O2结晶良好,具有规整的a-NaFeO2层状结构的.充放电测试表明在优化条件下合成的LiNi0.5Co0.5O2首次充电容量为170.1mAh/g,放电容量为157.4mAh/g,20次循环后保持初始容量的92%,循环稳定性良好.以MCMB为阳极材料,合成产物为阴极材料,组装成18650型锂离子电池,性能与LiCoO2相当. 相似文献
14.
15.
用控制结晶法合成球形材料Ni0.75Co0.2Mg0.05(OH)2与LiOH·H2O混合后,在750℃氧气气氛中焙烧得到LiNi0.75-Co0.2Mg0.05O2.电镜扫描(SEM)结果显示,焙烧后的材料保持了原有的球形形貌.X射线衍射光谱(XRD)和能量色散谱显微分析(EDS)显示,掺镁后的样品晶型结构好,所得产物成分均一.电化学测试表明,LiNi0.75Co0.2Mg0.05O2材料表现出优良的电化学性能,其首次充电比容量达到271 mAh/g,首次放电比容量达到217.7 mAh/g,循环50次后放电比容量仍能保持211.7 mAh/g,仅衰减了3%(3.0~4.3 V,0.2 C).结果表明,镁的掺入减少了材料的阳离子混排,大大提高了循环性能,抑制了充放电过程中的相变和电池阻抗的增加. 相似文献
16.
选用三元材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2为正极材料,中间相炭微球为负极材料,制备了额定容量为10 Ah的铝壳锂离子动力电池,并对电池的电性能和安全性能进行了相关测试。电性能包括充放电性能、倍率性能、循环性能和自放电,实验结果表明,电池表现出了良好的倍率性能,1 C、2 C的放电容量分别为0.5 C放电容量的97.49%、93.70%;在2.7~4.2V电压范围内,电池1 C循环400次后容量保持率为101.77%;电池满电常温搁置28天后容量保持率为97.06%。针刺、短路、过充电和自有跌落测试结果表明电池具有良好的安全性能。 相似文献