首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.  相似文献   

2.
Efficacies of the 5-hydroxytryptamine (serotonin) 5-HT3 receptor (5-HT3R) agonists 2-methyl-5-HT, dopamine, and m-chlorophenylbiguanide on 5-HT3R native to N1E-115 cells and on homopentameric 5-HT3R expressed in Xenopus oocytes were determined relative to that of 5-HT. Efficacies of 2-methyl-5-HT and dopamine on 5-HT3R native to differentiated N1E-115 cells are high (54 and 36%) as compared with their efficacies on homopentameric 5-HT3R-A(L) and 5-HT3R-A(S) receptors expressed in oocytes (4-8%). m-Chlorophenylbiguanide does not distinguish between 5-HT3R in N1E-115 cells and in oocytes. The distinct pharmacological profile of 5-HT3R native to differentiated N1E-115 cells is conserved when poly(A)+ mRNA from these cells is expressed in oocytes. The results indicate that, apart from the known 5-HT3R subunits, N1E-115 cells express additional proteins involved in 5-HT3R function.  相似文献   

3.
Expression of the protein kinase C substrate MARCKS and other heat-stable myristoylated proteins have been studied in four cultured neural cell lines. Amounts of MARCKS protein, measured by [3H]myristate labeling and western blotting, were severalfold higher in rat C6 glioma and human HTB-11 (SK-N-SH) neuroblastoma cells than in HTB-10 (SK-N-MC) or mouse N1E-115 neuroblastoma cells. Higher levels of MARCKS mRNA were also detected in the former cell lines by S1 nuclease protection assay. At least two additional 3H-myristoylated proteins of 50 and 40-45 kDa were observed in cell extracts heated to > 80 degrees C or treated with perchloric acid. The 50-kDa protein, which bound to calmodulin in the presence of Ca2+, was more prominent in cells (N1E-115 and HTB-10) with less MARCKS, whereas neuromodulin (GAP-43) was detected in N1E-115 and HTB-11 cells only. Heating resulted in a fourfold increase in the detection of MARCKS by western blotting; this was not paralleled by a similar increase in [3H]myristate-labeled MARCKS and may be due to a conformational change affecting the C-terminal epitope or enhanced rechange of the protein on nitrocellulose. Addition of beta-12-O-tetradecanoylphorbol 13-acetate resulted in three- to fourfold increased phosphorylation of MARCKS in HTB-11 cells, with little increase noted in HTB-10 cells. These results indicate that MARCKS, neuromodulin, and other calmodulin-binding protein kinase C substrates exhibit distinct levels of expression in cultured neurotumor cell lines. Of these proteins, only MARCKS appears to be correlated with phorbol ester stimulation of phosphatidylcholine turnover in these cells.  相似文献   

4.
Three neuroblastoma systems were used to define fucose-containing glycopeptides on the cell surface and to relate them to the phenotypic expressions of neuronal functions. These systems were a) clonal lines of mouse neuroblastoma C-1300, b) cell hybrids of mouse neuroblastoma and rat glioma, and c) human neuroblastomas, primary cells from the tumor, and cell lines. The results suggest that similarities exist in the membrane glycopeptides available at the surface of the mouse and human cells. It is proposed that these similarities correspond to the ability of the cells to perform the differentiated functions of neuronal cells or to exist as tumors. Based on analogy with other cell membranes, a schema is given for the structure of the membrane glycopeptides on the neuroblastoma cell.  相似文献   

5.
The effects of the carbamate physostigmine and of the organophosphates (OPs) parathion, paraoxon and phenyl saligenin cyclic phosphate (PSP) were examined on different subtypes of neuronal nicotinic acetylcholine receptors (nAChR). Stimulation with 1 mM ACh induced transient nicotinic inward currents in mouse N1E-115 and human SH-SY5Y neuroblastoma and in locust thoracic ganglion cells. All four acetylcholinesterase (AChE) inhibitors reduced the nicotinic currents in a concentration-dependent manner. Parathion is about 50 times more potent in blocking nAChR, compared to its active AChE inhibiting metabolite paraoxon. The relative blocking potency of the different AChE inhibitors was the same in all cell types, and followed the order parathion > physostigmine > PSP > paraoxon. In N1E-115 cells the IC50 values of block amounted to 2 microM, 30 microM, 39 microM and 96 microM for parathion, physostigmine, PSP and paraoxon, respectively. In all cell types, the nicotinic currents were equally blocked by parathion. Human nAChR in SH-SY5Y cells appeared more sensitive to block by physostigmine, PSP and paraoxon, while these AChE inhibitors similarly inhibited nicotinic currents in insect cells and in mouse neuroblastoma cells. The observation that the concentration-dependence of block is different from that of AChE inhibition, indicates a distinct interaction of AChE inhibitors with nAChR. Only in locust cells physostigmine induced a non-desensitizing inward current, that appeared to originate from nAChR activation. Occasionally, the OPs were able to activate slow ionic currents in mouse, but not in human and locust cells. As the OP-induced agonistic activity in mouse cells was not associated with the blocking action, the target site appeared to be distinct from nAChR. These results show that AChE inhibitors block nAChR with different potencies, dependent on the compound and the receptor subtype, and may activate distinct ion currents in neuronal cells of different species origin.  相似文献   

6.
7.
8.
Primary embryonic hippocampal neurons can develop morphologically and functionally in culture but do not survive more than a few weeks. It has been reported that basic fibroblast growth factor (bFGF) promotes the survival of and neurite elongation from fetal hippocampal neurons. We report that bFGF, in a dose-dependent manner, can induce the survival (50 pg to 1 ng/ml) and proliferation (10-20 ng/ml) of embryonic hippocampal progenitor neurons in vitro. In serum-free medium containing high concentrations of bFGF, neurons not only proliferated (4-day doubling time) and differentiated morphologically but also could be passaged and grown as continuous cell lines. The neuronal nature of the proliferating cells was positively established by immunostaining with several different neuron-specific markers and by detailed ultrastructural analyses. The proliferative effect of bFGF was used to generate nearly pure neuronal cell cultures that can be passaged, frozen, thawed, and cultured again. Neurons have been maintained > 5 months in culture. The ability to establish long-term primary neuronal cultures offers the possibility that clonal lines of distinct neuronal cell types may be isolated from specific areas of the central nervous system. Such long-term neuronal cultures should prove valuable in studying neurons at the individual cell level and also in exploring interactions between neurons in vitro. The observed dose dependence raises the possibility that cell survival and proliferation in vivo may be influenced by different levels of bFGF.  相似文献   

9.
Cellular uptake of neutral red dye (NR) is currently used as an indirect measure of viable cells in cultures. We used E-63 rat skeletal muscle cells to identify causes of NR assay variability and to develop modifications that substantially reduce it. Three methods of NR preparation and/or addition to cells were used. When NR medium was prepared, incubated overnight, and filtered to remove precipitates, the amount of dye precipitated varied greatly. Coefficients of variation (CVs) in NR uptake were greater than 25% between assays. Higher NR concentrations, longer incubation times, increased pH, and decreased temperature promoted NR precipitation in media. NR media prepared and filtered just prior to use or direct addition of prefiltered NR stock solution to cell cultures resulted in much smaller CVs between assays. NR was cytotoxic to E-63 rat muscle and primary quail myoblasts in a time- and concentration-dependent manner. NR exposure to E-63 cells for greater than 1.25 and 2 hr at 157 or 127 microg/ml, respectively, was associated with swelling and rupture of lysosomes. By contrast, there was no evidence of cytotoxicity when E-63 cells were exposed to NR for 1 hr at either 127 or 157 microg/ml. Primary quail myoblasts developed lysosomal swelling and ruptured more rapidly than E-63 cells when exposed to NR at either 127 or 157 microg/ml. For confluent 10-day cultures of E-63 cells exposed to NR at 127 microg/ml for 1 hr, the CVs within assay and between assays were 3.3-3.9% and 5.1%, respectively. For similarly exposed, actively replicating 3-day cultures of E-63 cells, the CVs within and between assays were 6.2-9.6% and 2.4%, respectively. NR uptake by the E-63 cells was linear with respect to viable cell number.  相似文献   

10.
Using N1E-115 neuroblastoma cells as an experimental model, we have examined if four commonly used i.v. anaesthetic induction agents interact with 5-HT3 receptors. Specifically, we tested the hypothesis that the antiemetic effects of propofol may result from 5-HT3 receptor antagonism. Binding of tropisetron (a 5-HT3 selective reference compound), etomidate, ketamine, thiopentone and propofol to 5-HT3 receptors was assessed by measuring the displacement of [3H]BRL 43694 from whole N1E-115 cells. The rank order potency (Ki) was tropisetron (1.7 (SEM 0.2) nmol litre-1) > etomidate (83.(4) mumol litre-1) > or = ketamine (97 (4) mumol litre-1) > thiopentone (177 (9) mumol litre-1) > propofol (819 (171) mumol litre-1). With the exception of thiopentone these effects were outside the clinical range and suggest that anaesthetic agents are unlikely to interact directly with 5-HT3 receptors, and that other mechanism(s) must underlie the antiemetic effects of propofol.  相似文献   

11.
Monoclonal antibodies (MAbs) E-4, E-21, and DIII A3, which recognize the same or similar overlapping peptides in the variable domain IV of the major outer membrane protein of Chlamydia trachomatis but differ in isotype, were used in a complement-independent (CI) in vitro neutralization assay. These MAbs had previously been shown to neutralize chlamydial infectivity in HeLa 229 cells in a complement-dependent assay. In this report, all three MAbs neutralized chlamydial infectivity in HaK cells in a CI assay. However, when HeLa cells were used as the host cell, MAb E-4 (immunoglobulin G2b [IgG2b]) and MAb DIII A3 (IgG2b) failed to neutralize infectivity, while MAb E-21 (IgG1) neutralized chlamydial infectivity. These findings are consistent with the proposal that because of the presence of Fc gamma RIII receptors, HeLa cells facilitate infectivity and thus block neutralization through the uptake of an IgG2b-chlamydia complex. Since Fc gamma RIII receptors do not bind or bind poorly to IgG1, neutralization of C. trachomatis by MAb E-21 in HeLa cells is also corroborative evidence for the role of Fc gamma RIII receptors in this interaction. A fivefold enhancement of infectivity was seen when 10 and 1 micrograms of MAb E-4 per ml were tested in a CI assay with HeLa cells. In performing CI neutralization synergy studies in HeLa cells with MAbs E-4 and E-21, antagonism between MAbs E-4 and E-21 was observed at MAb E-4 concentrations of 10 and 1 micrograms/ml for all concentrations of MAb E-21 tested (10 to 0.1 micrograms/ml). When HaK cells were used in the same studies, no antagonism between the MAbs was found. In addition, when HeLa cells were used in a CI assay, polyclonal serum raised to a peptide representing variable domain IV of the major outer membrane protein inhibited the neutralizing ability of MAb E-21. The blocking of neutralization and the enhancement of infectivity by chlamydia-specific antibodies seen in this investigation with HeLa cells may have important clinical implications for developing preventive strategies for chlamydial infections.  相似文献   

12.
Platelet-Activating Factor (PAF) is a potent lipid mediator involved in physiological and pathological events in the nervous tissue where it can be synthesized by two distinct pathways. The last reaction of the de novo pathway utilizes CDPcholine and alkylacetylglycerol and is catalyzed by a specific phosphocholinetransferase (PAF-PCT) whereas the remodelling pathway ends with the reaction catalyzed by lyso-PAF acetyltransferase (lyso-PAF AcT) utilizing lyso-PAF, a product of phospholipase A2 activity, and acetyl-CoA. The levels of PAF in the nervous tissue are also regulated by PAF acetylhydrolase that inactivates this mediator. We have studied the activities of these enzymes during cell proliferation and differentiation in two experimental models: 1) neuronal and glial primary cell cultures from chick embryo and 2) LA-N-1 neuroblastoma cells induced to differentiate by retinoic acid (RA). In undifferentiated neuronal cells from 8-days chick embryos the activity of PAF-PCT was much higher than that of lyso-PAF AcT but it decreased during the period of cellular proliferation up to the arrest of mitosis (day 1-3). During this period no significant changes of lyso-PAF AcT activity was observed. Both enzyme activities increased during the period of neuronal maturation and the formation of cellular contacts and synaptic-like junctions. The activity of PAF acetylhydrolase was unchanged during the development of the neuronal cultures. PAF-PCT activity did not change during the development of chick embryo glial cultures but lyso-PAF AcT activity increased up to the 12th day. RA treatment of LA-N-1 cell culture in proliferation decreased PAF-PCT activity and had no significant effect on lyso-PAF AcT and PAF acetylhydrolase indicating that the synthesis of PAF by the enzyme catalyzing the last step of the de novo pathway is inhibited when the LA-N-1 cells are induced to differentiate. These data suggest that: 1) in chick embryo primary cultures, both pathways are potentially able to contribute to PAF synthesis during development of neuronal cells particularly when they form synaptic-like junctions whereas, during development of glial cells, only the remodelling pathway might be particularly active on synthesizing PAF; 2) in LA-N-1 neuroblastoma cells PAF-synthesizing enzymes coexist and, when cells start to differentiate the contribution of the de novo pathway to PAF biosynthesis might be reduced.  相似文献   

13.
The mode and the kinetics of differentiation and death of murine N1E115 neuroblastoma cells induced by dimethyl sulfoxide and other nonspecific factors in vitro were investigated. After morphological differentiation neuroblastoma cells die by apoptosis which is indicated by characteristic morphological features and by internucleosomal DNA fragmentation. Durations of both differentiation and apoptosis are dependent on the nature of stimuli used. Protein synthesis inhibitor cycloheximide does not prevent differentiation and apoptosis of neuroblastoma cells induced by dimethyl sulfoxide and even accelerates both processes. The relationship between cell death and differentiation is discussed.  相似文献   

14.
The accumulation of [3H]triphenylmethylphosphonium cation in neuroblastoma N1E 115 cells in the presence of tetraphenylboron is reduced by 3,3'-diethylthiadicarbocyanine iodide and by 3,3'-dipropylthiadicarbocyanine iodide. This reduction in uptake of the lipophilic cation is not due to the carbocyanine dyes depolarizing the plasma membrane of these cells but due to an interaction between the carbocyanine dyes and tetraphenylboron leaving less of the lipophilic anion free in solution to assist uptake of the lipophilic cation. This interaction is shown to have a 1:1 stoicheiometry.  相似文献   

15.
16.
A critical role for the small GTPase Rho and one of its targets, p160ROCK (a Rho-associated coiled coil-forming protein kinase), in neurite remodeling was examined in neuroblastoma N1E-115 cells. Using wild-type and a dominant-negative form of p160ROCK and a p160ROCK-specific inhibitor, Y-27632, we show here that p160ROCK activation is necessary and sufficient for the agonist-induced neurite retraction and cell rounding. The neurite retraction was accompanied by elevated phosphorylation of myosin light chain and the disassembly of the intermediate filaments and microtubules. Y-27632 blocked both neurite retraction and the elevation of myosin light chain phosphorylation in a similar concentration-dependent manner. On the other hand, suppression of p160ROCK activity by expression of a dominant-negative form of p160ROCK induced neurites in the presence of serum by inducing the reassembly of the intermediate filaments and microtubules. The neurite outgrowth by the p160ROCK inhibition was blocked by coexpression of dominant-negative forms of Cdc42 and Rac, indicating that p160ROCK constitutively and negatively regulates neurite formation at least in part by inhibiting activation of Cdc42 and Rac. The assembly of microtubules and intermediate filaments to form extended processes by inhibitors of the Rho-ROCK pathway was also observed in Swiss 3T3 cells. These results indicate that Rho/ROCK-dependent tonic inhibition of cell process extension is exerted via activation of the actomysin-based contractility, in conjunction with a suppression of assembly of intermediate filaments and microtubules in many cell types including, but not exclusive to, neuronal cells.  相似文献   

17.
Although N-acetylaspartylglutamate (NAAG) is one of the neuropeptides found in highest concentrations in the mammalian central nervous system, its functional role in neuronal signaling has not been definitively established. In some neuronal populations, NAAG is concentrated in nerve terminals and thus, it may play a role in the cytoplasmic events underlying neurotransmitter exocytosis. In the present study we have validated the use of the synthetic derivative NAAG-acetoxymethyl triester (NAAG.AM) as a tool to increase the intracellular levels of the peptide and assessed the ability of NAAG to regulate [3H]-dopamine ([3H]-DA) secretion in PC12 cells. Enzymatic degradation of NAAG.AM by nonspecific brain esterases resulted in the progressive formation of NAAG and succinimidyl-NAAG (Asu-NAAG). However, only 8% of NAAG.AM was converted to NAAG. Significant amounts of NAAG (1 nmol/mg protein) were demonstrable in cultures of the neuroblastoma cell line N2A following incubation with NAAG.AM for 2 h, with the concentration of (Asu)-NAAG being at least 100-fold higher. The pheochromocytoma cell line PC12 was used to assess the influence of loaded NAAG derivatives on [3H]-DA exocytosis. Incubation with 0.1-1 mM NAAG.AM did not affect the basal efflux or total content of [3H]-DA. However, it induced a dose-dependent decrease of [3H]-DA secretion in response to 56 mM KCl depolarization reaching an inhibition of 49% with 1 mM NAAG.AM. In contrast, NAAG.AM did not affect secretion induced by the calcium ionophore A23187 (100 microM). The present study validates the use of NAAG.AM as a tool to load NAAG derivatives into intact cells and provides preliminary evidence for an intracellular role of the peptide.  相似文献   

18.
A comparison was made of rat primary astrocytes, C6 glioma cells pre-treated with dibutyryl cyclic AMP, and the human astrocyte 132N1 cell line using a range of 40 compounds and the neutral red (NR) assay. The 40 chemicals included substances known to be toxic to astrocytes or neurons, to be generally cytotoxic or not thought to be toxic to nervous tissue. For those compounds which were toxic, changes in glial fibrillary acidic protein (GFAP) levels were measured in the primary and C6 cultures, and changes in vimentin and S-100 measured in the C6 cells. The number of compounds with EC50 values < 2000 microg/ml for the NR assay for the different cell cultures were as follows: primary astrocytes, 19; C6 cells, 15; and 1321N1 cells, 11. The log of the EC50 values for the NR assay for the test compounds between the three cell types was not significantly different at the 5% level by paired Student's t-test. For the toxic substances the correlation coefficients of the EC50 values between primary cells and the C6 or 1321N1 cells were r > 0.5, and between the C6 and 1321N1 cells r > 0.9. For GFAP there was a similar degree of correlation in EC50 values between the different cell types. The GFAP, vimentin and S-100 levels showed similar EC50 values for the toxicants, but were not as sensitive as the NR assay. The toxic substances caused altered morphology in the primary, C6 and 1321N1 cells, with increased branching of cell processes. The combined astrocyte systems identified 8 out of 9 substances reported to be toxic to astrocytes in vivo, together with substances which have general cytotoxic properties. A number of substances (including the 1 out of 9 reported gliotoxic substances), which may primarily affect neurons, which may affect nervous tissue after long-term exposure, or which are not thought to be toxic to nervous tissue, were not detected. The astrocyte systems positively identify gliotoxic and cytotoxic substances and will allow detailed mechanistic studies to be made on the different underlying mechanisms.  相似文献   

19.
Ceramide is a lipid second messenger implicated in the mechanism of apoptotic cell death. The effect of the cell-permeable ceramide analogue C2 has been tested on primary cortical cultures of neurons, astrocytes, and oligodendrocytes as well as on the bipotential glial precursor cell line CG-4. After 24 hr of treatment, C2 ceramide induced a dose-dependent cell death in primary oligodendrocytes and precursor cells, with a maximum effect at 10 microM. Commitment of oligodendrocytes to cell death occurred within the first 6 hr of treatment. Ultramicroscopic analysis of primary oligodendrocytes exposed to C2 ceramide for 3.5 hr revealed extensive membrane blebbing in the absence of nuclear condensation. In contrast, similar treatment of primary neuronal or astrocytic cortical cultures had no effect on cell survival. Neurons and astrocytes were resistant to 10 microM C2 ceramide. Furthermore, bipotential progenitors that were differentiated toward astrocytes also became resistant to ceramide treatment as they acquired a mature astrocytic phenotype. These experiments suggest that cell type specific factors are required for ceramide-mediated cell death in the nervous system.  相似文献   

20.
Caveolae are cholesterol/sphingolipid-rich microdomains of the plasma membrane that have been implicated in signal transduction and vesicular trafficking. Caveolins are a family of caveolae-associated integral membrane proteins. Caveolin-1 and -2 show the widest range of expression, whereas caveolin-3 expression is restricted to muscle cell types. It has been previously reported that little or no caveolin mRNA species are detectable in the brain by Northern blot analyses or in neuroblastoma cell lines. However, it remains unknown whether caveolins are expressed within neuronal cells. Here we demonstrate the expression of caveolin-1 and -2 in differentiating PC12 cells and dorsal root ganglion (DRG) neurons by using mono-specific antibody probes. In PC12 cells, caveolin-1 expression is up-regulated on day 4 of nerve growth factor (NGF) treatment, whereas caveolin-2 expression is transiently up-regulated early in the differentiation program and then rapidly down-regulated. Interestingly, caveolin-2 is up-regulated in response to the mechanical injury of differentiated PC12 cells; up-regulation of caveolin-2 under these conditions is strictly dependent on continued treatment with NGF. Robust expression of caveolin-1 and -2 is also observed along the entire cell surface of DRG neurons, including high levels on growth cones. These findings demonstrate that neuronal cells express caveolins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号