首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceramic laminate systems (LTCC) provide an alternative to silicon for three-dimensional actuator fabrication. The results of a LTCC vertical actuator study are presented. Based on a multi-fold leaf spring design, appearing as a series of cantilevers oriented in opposite directions, vertical motion is achieved via electrostatic actuation to compress and release the structure. Single and multi-fold proof-of-concept devices were modeled, fabricated, and tested. The device can vertically actuate 10-μm per fold under an applied voltage of 35 V. The actuation per fold may be controlled at 0.33-μm/V, over the range of 5–35 V.  相似文献   

2.
To establish a better understanding of the complex densification and shrinkage processes of low-temperature co-fired ceramics (LTCC) and to improve the dimensional control in the manufacture of LTCC multilayer devices, the influence of glass, composite, and microstructural green tape characteristics on the densification and shrinkage behavior of LTCC materials, with special focus on the development of anisotropy, was investigated. To study the influence of these factors, a commercial LTCC system was analyzed regarding chemical and microstructural composition as well as sintering behavior. The results of the analysis showed that the commercial LTCC system is composed of alumina as a ceramic filler and a CaO–SiO2–B2O3–Al2O3 glass. Based on these results, a similar glass was produced. To understand the mechanisms of densification, its wetting behavior and viscosity as a function of temperature were investigated. As developed glass was mixed with an alumina powder and milled down to average grain sizes of 1, 2, and 3 μm, respectively. From these composite powders, slurries were prepared and tape cast. The sintering kinetics including onset temperature, development of viscous flow as well as phase development of both commercial and internally developed LTCC tapes LTCC tapes in relation to their modified composition and green tape structures were analyzed in situ by means of optical dilatometry, thermo-mechanical analysis (TMA), and high-temperature-X-ray diffraction. The viscous behavior of the glass-filler composites was determined by means of cyclic dilatometry in a TMA device.  相似文献   

3.
Dense three-dimensional (3D) microdevices of ZrO2-toughened Al2O3 (ZTA) were fabricated using microstereolithography and a subsequent sintering process. Using microstereolithography, 3D green bodies could be formed from a 40 vol% ZTA ceramic–resin paste. After sintering, the fabricated 3D devices are converted into dense ceramic devices without deformation. In this study, a gear (with a tooth edge of 25 μm) and a photonic crystal (with a lattice constant of 500 μm) were designed and fabricated. The dimensional accuracy of the fabrication process is within 20 μm and the sintering shrinkage is around 26% for these microdevices. The relative density of the sintered ZTA ceramics reached 96.5% of theoretical value. The measured hardness and toughness were about 14 GPa and 11 MPa m1/2, respectively, in both the top and side surfaces. A band gap between 320 and 420 GHz was observed in the ZTA photonic crystal. The microstereolithography process can be easily applied to other ceramic materials and devices.  相似文献   

4.
A miniature electrostatic thruster is being developed in Low Temperature Co‐fired Ceramic (LTCC) at Boise State University. The thruster is composed of an antenna to create the plasma, a cylinder to contain the plasma, and grids to extract the plasma beam at high velocity. In this work, the development of the inductively coupled plasma (ICP) antenna in LTCC will be presented. This antenna is fabricated using DuPont 951 LTCC tape. A Direct Write dispenser is used to apply silver paste for the spiral ICP antenna. Using LTCC allows for the antenna to be embedded in the device under a thin sheet of LTCC dielectric, which protects the antenna from ion back bombardment during operation. This thin sheet is the seventh layer of the total device, with the ICP antenna one layer below the top. The design of the antenna is based on the research done by J. Hopwood. This article discusses the fabrication and performance of the ICP antennas in LTCC. These ICP antennas are operated at pressures from 10 mTorr to 1 Torr with radio frequencies (RF) of 500 MHz to 1 GHz to inductively couple with low‐pressure argon to produce plasma. The performance of the antennas will be verified with data showing the start and stop power of the plasma at various pressures and an electric field map of the RF field above the antenna.  相似文献   

5.
Carbon burnout and densification of self-constrained low temperature co-fired ceramic (LTCC) are investigated using thermal analysis techniques. Slow heating rates and holding at a temperature higher than initial crystallization temperature of the glass component show evidence of retarding the densification of the self-constrained LTCC. Based on these results, it is proposed that the fabrication of embedded structures in a multi-layer self-constrained LTCC platform could be achieved by controlling carbon burnout with a multi-step co-firing profile, which can ensure complete carbon burnout without affecting the densification of LTCC structures. Using this approach, fabrication of an embedded cavity with dimensions of 10 mm × 10 mm × 0.50 mm in a self-constrained LTCC platform is demonstrated.  相似文献   

6.
Multilayer ceramic devices based on low-temperature co-fired ceramics (LTCC) materials provide a very promising technology. Most LTCC tapes available today contain considerable fractions of glass powders to lower the sintering temperature. However, the glassy phases offer more possibilities to set a proper sintering behavior, on the one hand, and to tailor the desired properties of the final LTCC substrate, on the other. The exploitation of demixing and subsequent crystallizing glass compositions was shown on an example of a low-permittivity (4.4)—low-loss (1.5 × 10−3) LTCC with a high quartz content. In another LTCC material, undesired demixing could be restricted and the crystal phase anorthite could be triggered by partial dissolution of alumina in the liquid phase during sintering. To estimate the effect of silver diffusion in the latter material, the surroundings of a pure silver via were studied. A silver-contaminated range of 50 μm was detected. Using model glasses containing silver oxide, a strong influence of dissolved silver on viscosity and crystallization behavior of the liquid phase was demonstrated. The dielectric properties of the sintered substrates were not degraded.  相似文献   

7.
The deformation behaviors of suspended low temperature co-fired ceramic (LTCC) laminates over a cavity and the evolution of open porosity of LTCC are studied for the fabrication of embedded structures in a multi-layer LTCC platform using carbon material. The effects of the type of LTCC materials (self-constrained and unconstrained LTCC), cavity width, laminate thickness, and lamination conditions on the deformation of the suspended LTCC laminate over a cavity are studied. For suspended three-layers and six-layers LTCC laminates over cavity width ranges from 10 to 25 mm, the self-constrained LTCC laminates were more dimensionally stable (sagged by less than ?120 μm) after sintering as compared to the unconstrained LTCC. The evolution of open porosity and the distribution of open pores in the self-constrained LTCC with changes in sintering temperature and laminate thickness are also studied for process optimization.  相似文献   

8.
A multilayer piezoelectric ceramic/polymer composite with 2–2 connectivity was fabricated by thermoplastic green machining after co-extrusion. The multilayer ceramic body was composed of piezoelectrically active lead zirconate titanate (PZN)–lead zinc niobate (PZN)-lead zirconate titanate (PZT) layers and electrically conducting PZN–PZT/Ag layers. After co-extruding the thermoplastic body, which consisted of five piezoelectric layers interspersed with four conducting layers, it was computer numeric-controlled machined to create periodic channels within it. Following binder burnout and sintering, an 18 vol% array of 190 μm thin PZT slabs with a channel size of 880 μm was fabricated. The channels were filled with epoxy in order to fabricate a PZN–PZT/epoxy composite with 2–2 connectivity. The piezoelectric coefficient (effective d 33) and hydrostatic figure of merit ( d h× g h) of the PZN–PZT/epoxy composite were 1200 pC/N and 20 130 × 10−15 m2/N, respectively. These excellent piezoelectric characteristics as well as the relatively simple fabrication procedure will contribute in widening the application range of the piezoelectric transducers.  相似文献   

9.
A new method of fabricating PZT/potymer composites with 2-2 connectivity is described. This fabrication technique offers significant advantages over conventional dice-and-fill fabrication methods, and the composites exhibit the high electromechanical coupling expected from conventional PZT/polymer composites. In this method, thin (≤20μm) sintered PZT plates and sheets of a thermoplastic polymer film (≤6 μm) are bonded together via thermal processing. A technique for sintering thin, flat PZT plates from tape cast materials was developed to provide the necessary PZT plates. The resulting composite blocks were cut to required dimensions, electroded, and poled. Electromechanical properties were measured to evaluate the composites.  相似文献   

10.
Biomorphous β-SiC ceramics were produced at 1400°C from pine wood impregnated with silica. This one-step carbothermal reduction process decreases the cost of manufacturing of SiC ceramics compared with siliconization of carbonized wood in silicon vapor. The synthesized sample exhibits a 14 m2/g surface area and has a hybrid pore structure with large 5–20 μm tubular macropores and small (<50 nm) slit-shaped mesopores. SiC whiskers of 20–400 nm in diameter and 5–20 μm in length formed within the tubular pores. These whiskers are expected to improve the filtration by removing dust particles that could otherwise penetrate through large pores. After ultrasonic milling, the powdered sample showed an average particle size of ∼30 nm. The SiC nanopowder produced in this process may be used for manufacturing SiC ceramics for structural, tribological, and other applications.  相似文献   

11.
Three-dimensional microneedle devices were created by femtosecond laser two photon polymerization (2PP) of organically modified ceramic (Ormocer®) hybrid materials. Arrays of in-plane and out-of-plane hollow microneedles (microneedle length=800 μm, microneedle base diameter=150–300 μm) with various aspect ratios were fabricated. The fracture and penetration properties of the microneedle arrays were examined using compression load testing. In these studies, the microneedle arrays penetrated cadaveric porcine adipose tissue without fracture. Human epidermal keratinocyte viability on the Ormocer® surfaces polymerized using 2PP was similar to that on control surfaces. These results suggest that 2PP is able to create microneedle structures for transdermal drug delivery with a larger range of geometries than conventional microfabrication techniques.  相似文献   

12.
This work focuses on the fabrication and assembly of cylindrical plasma containment tubes using DuPont's 951 low temperature co‐fired ceramics (LTCC) for use in miniature electrostatic thrusters. The tube is used to contain argon plasma, which is generated by a spiral inductively coupled plasma antenna, which is also fabricated in LTCC. The tube also interfaces with two electrically biased grids on the opposite end, which accelerate the plasma out of the tube. These interfaces are highly dependent on the dimensions and tolerances of the containment tube. The development of the fabrication process will be presented for the incorporation of the tubes and grids onto the base as a single structure. This includes constructing the antenna base, shaping the “rolled” LTCC containment tube using a jig and isostatic press, and integrating the tube and antenna base during the firing. Following the fabrication, measurements will be taken to determine tube circularity and hermeticity of the seal at the interface between the tube and the antenna base. The results will be presented and characterized to evaluate the effectiveness of the structure as well as the documentation of the development of a rolled LTCC tube structure integrated with a planar LTCC antenna base.  相似文献   

13.
Lead zirconate titanate (PZT) is a piezoelectric material that can sense or respond to mechanical deformations and can be used in ceramic electro-mechanical systems (C-MEMS). The microstructural, electrical, and piezoelectric characteristics of thick PZT films on low-temperature cofired ceramics (LTCC) and alumina substrates were studied. The PZT composition was prepared with low-melting-point additives in order to decrease the sintering temperature and to be compatible with thick-film technology. The integration of the PZT thick-film materials on ceramic substrates could lead to degradation of the PZT's characteristics due to the interactions between an active PZT layer and a substrate, particularly with glassy LTCC material. To minimize the interactions with LTCC substrates, an intermediate PZT barrier layer was integrated. The value of the piezoelectric coefficient d 33 was found to be up to 120 pC/N on an alumina substrate and approximately 50 on an LTCC substrate. Based on these results, a cantilever-type actuator was designed and fabricated on alumina substrates. Under an applied voltage of 200 V, the maximum tip deflection was about 5 μm.  相似文献   

14.
Aerosol deposition (AD) is applicable as a fabrication technology for microstructures comprising different materials. We used this method for electronic devices that consist of ceramic films and metal electrodes. Various ceramic thick films (5–50 μm thickness), for example, Al2O3, 2MgO·SiO2, and BaTiO3, were deposited on substrates using room-temperature aerosol deposition. The dielectric constant of BaTiO3 was 78 at 1 MHz. Multilayer constructions with ceramic films and copper electrodes were obtained using aerosol deposition and sputtering. During deposition, photoresist film masks were applied to produce patterns of ceramic films and connections between upper and lower electrodes through the ceramic films.  相似文献   

15.
The LTCC technique enables fabrication of microfluidic devices. The structures consist of channels, chambers and screen-printed passives. The lamination is a quality-determining process in the manufacture of the fluidic modules. The commonly used bonding method is thermocompression. The tapes are joined together at high pressure (up to 30 MPa) and temperature (up to 80 °C) for 2–15 min. Although these parameters allow good LTCC module encapsulation, the quality of the chamber geometry is strongly affected by high pressure and temperature. The cold chemical lamination (CCL) technique presented in this paper, a solvent-based method, largely avoids these problems. A film of a special solvent is deposited on the green tape, and softens the surface. The tape layers are then stacked and compressed at low pressure, below 100 kPa, at room temperature. The fabrication of a simple LTCC thermistor-based flow sensor is presented here to compare both lamination methods. The test device consists of one buried thermistor screen printed on a bridge hanging in a gas/liquid channel. The basic sensor parameters (measurement range, working temperature, output signal, working pressure and measurement error) are analyzed.  相似文献   

16.
Dense three-dimensional microphotonic crystals of SiO2–Al2O3 ceramics were fabricated using microstereolithography and successive sintering process. The forming dimensional tolerance for a 50 vol% ceramic paste is 10 μm and sintering shrinkage is around 12%. Diamond-type photonic crystals with lattice constants of 500 and 125 μm were formed and sintered successfully. The band gaps of the samples were measured and compared with the theoretically calculated band diagram.  相似文献   

17.
Processing of Bulk Alumina Ceramics Using Laser Engineered Net Shaping   总被引:4,自引:0,他引:4  
Application of rapid prototyping (RP) in ceramics manufacturing is motivated by advances in engineering ceramics where attaining complex shapes using traditional processing is difficult. Laser Engineered Net Shaping (LENS), a commercial RP process, is used to fabricate dense, net-shaped structures of α-Al2O3. Shapes such as cylinder, cube, and gear have been fabricated successfully with 10–25 mm section sizes. As-processed structures show anisotropy in mechanical properties with a high compressive strength normal to the build direction and columnar grains along the build direction. Heat treatment did not alter strength and anisotropy, but increased the grain size from 6 to 200 μm and hardness from 1550 to 1700 Hv.  相似文献   

18.
K x Ba1− x Ga2− x Ge2+ x O8 (0.6≤ x ≤1) polycrystalline ceramics are potential materials for glass-free low-temperature cofired ceramics (LTCC) substrates. We have made a comprehensive study of the kinetics of the monoclinic-to-monoclinic P 21/ a ⇔ C 2/ m phase transition. The low-temperature-stable P 21/ a phase with a high Q × f value was synthesized using a subsolidus method and was well sintered at the LTCC temperature with a H3BO3 additive. A good combination of low sintering temperature (910°–920°C), high Q × f values (96 700–104 500 GHz), low permittivities (5.6–6.0), and a small temperature coefficient of resonant frequency (∼−20 ppm/°C) was obtained for ceramics with x =0.67 and 0.9 and with 0.1 wt% of H3BO3.  相似文献   

19.
Low‐temperature co‐fired ceramics (LTCC) enable the fabrication of microfluidic elements such as channels and embedded cavities in electrical devices. Hence, LTCC facilitate the realization of complex and integrated microfluidic devices. Examples can be applied in many areas like reaction chambers for synthesis of chemical compounds. However, for many applications it is necessary to have an optically transparent interface to the surroundings. The integration of optical windows in LTCC opens up a wide field of new and innovative applications such as the observation of chemiluminescent reactions. These chemical reactions emit electromagnetic radiation and thus offer a method for noninvasive detection. Thin glasses (≤500 μm) were bonded by thermocompression onto a LTCC substrate. As the bonding agent, a glass frit paste was used. Borosilicate glasses, fused silica as well as silicon were successfully bonded onto LTCC. To join materials with a large coefficient of thermal expansion mismatch (i.e., fused silica and LTCC), it is necessary to limit the heat input to the bond interface. Therefore, a heating structure was integrated into the LTCC substrate beneath the bond interface. This bonding process provides a gas‐tight optical port with a high bond strength.  相似文献   

20.
The lath-like β-tricalcium phosphate (β-TCP) in the sintered porous β-TCP implants was revealed by transmission electron microscope (TEM). Samples of sintered porous β-TCP implants were extracted from rabbit tibia after implanted for 1–6 months. Although the majority of sintered β-TCP particles are in a granular shape, the lath-like structures of implants are observed occasionally. The length of laths is on the order of 1 μm, while the thickness of laths is on the order of 10 nm. The X-ray energy dispersive spectroscopy and the electron diffraction indicate that the lath-like material is β-TCP with its rhombohedral (     ) plane parallel to the longitudinal direction of laths. High resolution TEM imaging also confirms the finding of electron diffraction. This abnormal morphology of β-TCP have raised our attention, even though its formation mechanism and effects on osseointegration is not yet certain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号