首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
根据磁流变减振器的工作原理提出了一种JETTA轿车新型汽车磁流变减振器的机械结构,利用FEM方法优化了磁流变减振器的磁路设计和机械结构设计,并通过减振效果实验进一步验证了磁流变减振器的磁路设计和机械结构设计的正确性。该减振器机械结构简单,减振实时控制,具有较好的减振效果。  相似文献   

2.
介绍了一种新型磁流变液减振器的工作原理及结构,结合伪静力模型和Bouc-Wen模型,建立了磁流变液减振器阻尼力特性方程,通过Matlab/Simulink仿真分析了磁流变液减振器阻尼力-位移、阻尼力-速度变化规律,验证了所建立磁流变液减振器阻尼力数学模型的正确性,为磁流变液减振器的深入研究提供了理论依据。  相似文献   

3.
利用新型智能材料磁流变液,设计了一种混合工作模式的磁流变液减振器。该减振器结构上采用间隙式节流通道,外加磁场方向与磁流变液的流动方向垂直。在MTS实验机上对该减振器的特性进行了实验研究,在低频条件下,获得了较大的阻尼力输出,其增幅最大可达165.55%。  相似文献   

4.
利用新型智能材料磁流变液,设计了一种混合工作模式的磁流变液减振器.该减振器结构上采用间隙式节流通道,外加磁场方向与磁流变液的流动方向垂直.在MTS实验机上对该减振器的特性进行了实验研究,在低频条件下,获得了较大的阻尼力输出,其增幅最大可达165.55%.  相似文献   

5.
日益引人注目的磁流变液   总被引:2,自引:0,他引:2  
  相似文献   

6.
磁流变减振器是一种可实现半主动控制的理想减振装置.本文对救护车辆的磁流变减振器进行了实验研究,分析了不同振动状态和输入电压下减振器的示功特性和速度特性.实验表明,磁流变减振器具有良好的阻尼可控特性,是理想的救护车辆减振控制装置.  相似文献   

7.
简要介绍磁流变阻尼器的工程应用,分析磁流变阻尼器的力学模型及其特征.  相似文献   

8.
在介绍了磁流变液的组成和工作原理的基础上,分别从稳定性、磁学性质以及其器件的控制性方面,对纳米磁流变液和微米液性质进行比较,指出纳米材料在这这些方面具有无可比拟的性质,有着广泛的应用前景。  相似文献   

9.
磁流变减振器的磁路结构是磁流变减振器设计的重要环节,该结构的好坏将直接影响到减振器的工作性能的优良。采取参数化仿真的方法,分析得到了磁路的关键结构参数对间隙磁路的磁感应强度的影响,针对设计目标,选取设计变量,建立磁路的仿真模型。在磁流变减振器的设计中引入有限元分析的优化设计过程,采用参数化语言编程对模型结构参数进行优化。加工磁流变减振器样机,实验验证优化效果。仿真分析及实验结果均表明:运用参数化语言编程对磁流变减振器的磁路结构进行优化设计后,间隙处的磁感应强度得到明显改善,能够满足设计目标,磁场分布更加合理,是一种有效的磁路优化方法。  相似文献   

10.
磁流变减振器及其在汽车半主动悬架中的应用   总被引:5,自引:0,他引:5  
论述了磁流变液的特性及磁流变减振器的工作原理。结合国内外最新研究成果,综述了汽车半主动悬架磁流变减振器所采用的控制策略。对汽车半主动悬架磁流变减振器今后的研究工作重点进行了探讨。  相似文献   

11.
智能材料及其器件是当今高技术材料研究的重要领域之一,电(磁)致流变材料是智能材料的一个重要分支。本文介绍了电(磁)致流变材料一电流变液、磁流变液的特性、应用及它们的最新发展情况。  相似文献   

12.
减振器是汽车悬架的重要组成部分,在汽车行驶过程中主要起衰减振动的作用。汽车减振器中应用最广泛的为液力减振器,为了研究液力减振器的阻尼特性,针对某汽车液力减振器,分析了其结构和工作原理,建立了其液力系统图,利用流体力学知识分别建立了减振器活塞阀系、底阀、储油腔压力的数学模型,进而推导出减振器伸张行程和压缩行程阻尼特性的数学模型,并利用MATLAB/SIMULINK进行了仿真。利用减振器性能综合试验台对该减振器进行了试验,得出示功图,与仿真结果进行对比,图形形状基本一致,验证了数学模型的有效性。通过试验分析了频率变化对减振器阻尼特性的影响,为减振器的设计和使用提供了参考。  相似文献   

13.
A microstructural model of the motion of particle pairs in MR fluids is proposed that accounts for both hydrodynamic and magnetic field forces. A fluid constitutive equation is derived, from the model that allows the prediction of velocity and particle structure fields. The analysis is similar to that of bead-spring models of polymeric liquids with replacement of the elastic connector force by a magnetic force. Results for simple shear flow are presented for the case when the two particles remain in close contact so they are hydrodynamically equivalent to an ellipsoid with an aspect ratio of two and only the component of the magnetic force normal to the connecting vector between the centers of the two particles affects motion. The model predicts oscillatory motion of the particle pairs at low magnetic fields. The fluid reaches a steady state at high magnetic fields. The time required to reach the steady state for a given shear rate reduces significantly as the field increases.  相似文献   

14.
磁流变体流变学特性研究   总被引:2,自引:0,他引:2  
本文对所研制的矿物油价质和硅油介质磁流变体样品的零场粘度,磁流变性能,示功及速率特性进行了系统的测试和分析,并对其影响因素进行了详细的讨论.  相似文献   

15.
王嘉琪  肖强 《表面技术》2019,48(10):317-328
磁流变抛光技术具有加工面形精度高、表面粗糙度小、加工过程易于控制、表面损伤小、加工过程中不产生新的损伤等优秀特点,因此多应用于加工要求高的精密和超精密领域,最常应用于光学加工方面。综述了磁流变抛光技术材料去除数学模型的建立进展,论证了该模型的正确性,总结出该基本模型具有通用性,模型能够适用于平面和凸球面等形面加工中,此外,对实现计算机控制抛光过程的准确性具有指导意义。概述了磁流变抛光工艺实验进展,总结磁流变抛光影响抛光效果的主要因素是磁场强度和磁场发生装置,在优化工艺参数组合下能够达到纳米级表面,能够消除亚表面损伤,还能够用以加工各种复杂形面等。就目前磁流变抛光技术的发展新方向作以总结,包括集群磁流变抛光技术、组合磁流变抛光技术以及磁流变-超声复合抛光技术,介绍这几种加工方法的工作原理以及能够达到的实验效果。最后对现阶段磁流变抛光技术中存在的问题做出总结,并针对各个问题提出相对应的思考和展望。  相似文献   

16.
赵峰 《机床与液压》2023,51(17):146-152
以SR20飞机前起落架减振器为例,通过逆向建模的方法建立减振器的三维模型,并使用Fluent进行流体仿真,通过台架试验的方法验证仿真模型的正确性,在此基础上改变减振器常通孔直径、导油槽宽度、导油槽深度、活塞杆直径和单向活门直径来探究其结构参数变化对减振器动态性能的影响。结果表明:常通孔直径相较于其他4个参数对减振器的动态性能影响较小;导油槽的流通面积对于减振器的动态性能影响较大,其中导油槽宽度的影响大于导油槽深度;随着导油槽流通面积的减少,减振器中位复原阻尼力和中位压缩阻尼力变大,且变化明显;活塞杆直径减小,减振器阻尼力变大;单向活门直径减小,减振器复原阻尼力不变,中位压缩阻尼力变大。  相似文献   

17.
液力减振器是汽车上常用的减振器,为了研究液力减振器的阻尼特性,首先分析了液力减振器的结构和工作原理,然后利用减振器特性综合试验台对随机购买的4种液力减振器进行了阻尼特性试验,分别得出示功图,由示功图分析了减振器在性能上存在的缺陷,并用数学方法验算了减振器的空程性畸变,与试验结果一致,同时也分析了频率对空行程的影响。通过试验分析了频率对阻尼特性的影响和减振器的阻尼衰减性,为减振器的设计改进及使用提供了参考依据。  相似文献   

18.
刘思德 《模具技术》2003,(2):31-32,39
分析了后减震器帽的成形工艺,介绍了成形该零件的拉深模、翻边模以及旋压模具结构。结该零件采用的冲工艺孔拉深法和旋压形法以及翻边工艺,具有很强的实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号