首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interfacial reaction layers in the Ti/ZrO2 diffusion couples, isothermally annealed in argon at temperatures ranging from 1100° to 1550°C for 6 h, were characterized using scanning electron microscopy and transmission electron microscopy, both attached with an energy-dispersive spectrometer. Very limited reaction occurred between Ti and ZrO2 at 1100°C. A β'-Ti(Zr, O) layer and a two-phase α-Ti(O)+β'-Ti(Zr, O) layer were found in the titanium side after annealing at T ≥1300°C and T ≥1400°C, respectively. A three-phase layer, consisting of Ti2ZrO+α-Ti(O, Zr)+β'-Ti (O, Zr), was formed after annealing at 1550°C. In the zirconia side near the original interface, β'-Ti coexisted with fine spherical c- ZrO2− x , which dissolved a significant amount of Y2O3 in solid solution at T ≥1300°C. Further into the ceramic side, the α-Zr was formed due to the exsolution of Zr out of the metastable ZrO2− x after annealing at T ≥1300°C: the α-Zr was very fine and dense at 1300°C, continuously distributed along grain boundaries at 1400°C, and became coarsened at 1550°C. Zirconia grains grew significantly at T ≥1400°C, with the lenticular t -ZrO2− x being precipitated in c -ZrO2− x . Finally, the microstructural development and diffusion paths in the Ti/ZrO2 diffusion couples annealed at various temperatures were also described with the aid of the Ti–Zr–O ternary phase diagram.  相似文献   

2.
A diffusion couple of 3 mol% Y2O3–ZrO2 and titanium was isothermally annealed in argon at temperatures between 1100° and 1550°C. The phases and microstructure in the ceramic side were investigated using scanning electron microscopy and transmission electron microscopy, both attached to an energy-dispersive spectrometer. After annealing at 1100°C/6 h, zirconia grains did not grow conspicuously and evolved only traces of oxygen, resulting in t -ZrO2− x but not α-Zr. At temperatures above 1300°C, a significant amount of oxygen evolved from zirconia, reducing the O/Zr ratio, such that α-Zr was excluded from t -ZrO2− x during cooling, yielding a higher O/Zr ratio (≈2). When held at 1550°C/6 h, zirconia grains grew rapidly. The α-Zr was segregated on grain boundaries during cooling by the exsolution of zirconium from ZrO2− x , while twinned t '-ZrO2− x or lenticular t -ZrO2− x , which was embedded in ordered c- ZrO2− x , was found. The ordered c -ZrO2− x was identified by the     {113} superlattice reflections of its electron diffraction patterns.  相似文献   

3.
Mixtures of ultrafine monoclinic zirconia and aluminum hydroxide were prepared by adding NH4OH to hydrolyzed zirconia sols containing varied amounts of aluminum sulfate. The mixtures were heat-treated at 500° to 1300°C. The relative stability of monoclinic and tetragonal ZrO2 in these ultrafine particles was studied by X-ray diffractometry. Growth of ZrO2 crystallites at elevated temperatures was strongly inhibited by Al2O3 derived from aluminum hydroxide. The monoclinic-to-tetragonal phase transformation temperature was lowered to ∼500°C in the mixture containing 10 vol% Al2O3, and the tetragonal phase was retained on cooling to room temperature. This behavior may be explained on the basis of Garvie's hypothesis that the surface free energy of tetragonal ZrO2 is lower than that of the monoclinic form. With increasing A12O3 content, however, the transformation temperature gradually increased, although the growth of ZrO2 particles was inhibited; this was found to be affected by water vapor formed from aluminum hydroxide on heating. The presence of atmospheric water vapor elevates the transformation temperature for ultrafine ZrO2. The reverse tetragonal-to-monoclinic transformation is promoted by water vapor at lower temperatures. Accordingly, it was concluded that the monoclinic phase in fine ZrO2 particles was stabilized by the presence of water vapor, which probably decreases the surface energy.  相似文献   

4.
Euctectoid decomposition of cubic ( c ) ZrO2 in MgO-partially-stabilized ZrO2 (Mg-PSZ) has been studied using optical, scanning electron, and transmission electron microscopy. Alloys containing from 8.1 to 18.6 mol% MgO were decomposed by annealing between 1100° and 1300°C for times up to 16 h. The eutectoid products nucleated heterogeneously at the grain boundaries and advanced into the adjoining two-phase grains. Decomposition proceeded as a "cellular" reaction involving the cooperative growth of MgO and a low-solute ZrO2 phase with either monoclinic ( m ) or tetragonal ( t ) symmetry. The MgO morphology is rodlike and exhibits a well-defined orientation relationship to m -ZrO2. The rate of eutectoid decomposition was a maximum at 1200°C and was greater in the solute-rich materials at all temperatures. At 1100°C, SrO doping decreased the nucleation rate of the eutectoid product in a 9.7 mol% alloy, thus strongly suppressing the decomposition rates; at the higher decomposition temperatures, the SrO was less effective.  相似文献   

5.
In the present work, we report the processing of ultrahard tungsten carbide (WC) nanocomposites with 6 wt% zirconia additions. The densification is conducted by the spark plasma sintering (SPS) technique in a vacuum. Fully dense materials are obtained after SPS at 1300°C for 5 min. The sinterability and mechanical properties of the WC–6 wt% ZrO2 materials are compared with the conventional WC–6 wt% Co materials. Because of the high heating rate, lower sintering temperature, and short holding time involved in SPS, extremely fine zirconia particles (∼100 nm) and submicrometer WC grains are retained in the WC–ZrO2 nanostructured composites. Independent of the processing route (SPS or pressureless sintering in a vacuum), superior hardness (21–24 GPa) is obtained with the newly developed WC–ZrO2 materials compared with that of the WC–Co materials (15–17 GPa). This extremely high hardness of the novel WC–ZrO2 composites is expected to lead to significantly higher abrasive-wear resistance.  相似文献   

6.
Mullite–ZrO2 composites have been fabricated by attrition milling a powder mixture of zircon, alumina, and aluminum metal with MgO or TiO2 as sintering additives, heating at 1100°C to oxidize the aluminum metal, and consolidation by spark plasma sintering (SPS). The influence of the SPS temperature on the formation of mullite, and the density and the mechanical properties of the resulting composites have been studied. For the mullite–zirconia composites without sintering additives, the mullite formation was accomplished at 1540°C. In contrast, for the composites having MgO and TiO2, the formation temperature dropped to 1460°C. The composites without sintering additives were almost fully dense (99.9% relative density) and retained a larger amount of tetragonal zirconia. Those materials attained the best mechanical properties ( E =214 GPa and K I C =6 MPa·m1/2). To highlight the advantages of using the SPS technique, the obtained results have been compared with the characteristics of a mullite–zirconia composite prepared by the conventional reaction-sintering process.  相似文献   

7.
CrN powder consisting of granular particles of ∼3 μm has been prepared by self-propagating high-temperature synthesis under a nitrogen pressure of 12 MPa using Cr metal. Dense pure CrN ceramics and CrN/ZrO2(2Y) composites in the CrN-rich region have been fabricated by hot isostatic pressing for 2 h at 1300°C and 196 MPa. The former ceramics have a fracture toughness ( K IC) of 3.3 MPa ·m1/2 and a bending strength (σb) of 400 MPa. In the latter materials almost all of the ZrO2(2Y) grains (0.36–0.41 μm) are located in the grain boundaries of CrN (∼4.6 μm). The values of K IC (6.1 MPa · m1/2) and σb (1070 MPa) are obtained in the composites containing 50 vol% ZrO2(2Y).  相似文献   

8.
The oxidation of hot-pressed SiC-particle (SiCp)/zirconia (ZrO2)/mullite composites with various ZrO2 contents, exposed in air isothermally at 1000° and 1200°C for up to 500 h, was investigated; an emphasis was placed on the effects of the ZrO2 content on the oxidation behavior. A clear critical volume fraction of ZrO2 existed for exposures at either 1000° or 1200°C: the oxidation rate increased dramatically at ZrO2 contents of >20 vol%. The sharp transition in the oxidation rate due to the variation of ZrO2 content could be explained by the percolation theory, when applied to the oxygen diffusivity in a randomly distributed two-phase medium. Morphologically, the composites with ZrO2 contents greater than the critical value showed a large oxidation zone, whereas the composites with ZrO2 contents less than the critical value revealed a much-thinner oxidation zone. The results also indicated that the formation of zircon (ZrSiO4) at 1200°C, through the reaction between ZrO2 and the oxide product, could reduce the oxidation rate of the composite.  相似文献   

9.
Composite ceramic materials based on Si3N4 and ZrO2 stabilized by 3 mol% Y2O3 have been formed using aluminum isopropoxide as a precursor for the Al2O3 sintering aid. Densification was carred out by hot-pressing at temperatures in the range 1650° to 1800°C, and the resulting micro-structures were related to mechanical properties as well as to oxidation behavior at 1200°C. Densification at the higher temperatures resulted in a fibrous morphology of the Si3N4 matrix with consequent high room-temperature toughness and strength. Decomposition of the ZrO2 grains below the oxidized surface during oxidation introduced radial stresses in the subscalar region, and from the oxidation experiments it is suggested that the ZrO2 incorporated some N during densification.  相似文献   

10.
Intimate mixtures of Cr2O3/ZrO2(2.5Y) in the Cr2O3-rich region are produced at low temperatures from amorphous materials prepared by the hydrazine method. Spark plasma sintering (SPS) has been performed for 10 min at 1300°C and 30 MPa. Composite ceramics with homogeneously dispersed fine ZrO2 (0.2 µm) give 99.8% of theoretical densities. Their mechanical properties are examined in connection with increased ZrO2 content. A high fracture toughness of 9.3 MPam1/2 and an excellent bending strength of 1290 MPa are achieved in the composite ceramics containing 50 mol% ZrO2.  相似文献   

11.
Yttria-ceria-doped tetragonal zirconia (Y,Ce)-TZP)/alumina (Al2O3) composites were fabricated by hot isostatic pressing at 1400° to 1450°C and 196 MPa in an Ar–O2 atmosphere using the fine powders prepared by hydrolysis of ZrOCl2 solution. The composites consisting of 25 wt% Al2O3 and tetragonal zirconia with compositions 4 mol% YO1.5–4 mol% CeO2–ZrO2 and 2.5 mol% YO1.5–5.5 mol% CeO2–ZrO2 exhibited mean fracture strength as high as 2000 MPa and were resistant to phase transformation under saturated water vapor pressure at 180°C (1 MPa). Postsintering hot isostatic pressing of (4Y, 4Ce)-TZP/Al2O3 and (2.5Y, 5.5Ce)-TZP/Al2O3 composites was useful to enhance the phase stability under hydrothermal conditions and strength.  相似文献   

12.
Mullite/Y-TZP composites in the mullite-rich region, using powders of mullite prepared via the hydrazine method and a commercially available zirconia compound (ZrO2(2Y)), have been fabricated by sintering for 3 h at 1450°C in air. The grain sizes of mullite and ZrO2(2Y) are changed with increased ZrO2(2Y) content; the former decreases from 0.25 µm to 0.13 µm, and the latter increases from 0.21 µm to 0.35 µm. High strength (780 MPa) and fracture toughness (5.4 MPam1/2) are obtained in the 50/50 (vol%) mullite/ZrO2(2Y) composite with 99.6% of theoretical density.  相似文献   

13.
Intermetallic CoAl powder has been prepared via self-propagating high-temperature synthesis (SHS). Dense CoAl materials (99.6% of theoretical) with the combined additions of ZrO2(3Y) and Al2O3 have been fabricated via spark plasma sintering (SPS) for 10 min at 1300°C and 30 MPa. The microstructures are such that tetragonal ZrO2 (0.3 μm) and Al2O3 (0.5 μm) particles are located at the grain boundaries of the CoAl (8.5 μm) matrix. Improved mechanical properties are obtained; especially the fracture toughness and the bending strength of the materials with ZrO2(3Y)/Al2O3= 16/4 mol% are 3.87 MPa·m1/2 and 1080 MPa, respectively, and high strength (>600 MPa) can be retained up to 1000°C.  相似文献   

14.
Changes in the phase composition and microstructure of yttria-partially-stabilized zirconia by low-temperature annealing were investigated at 100° to 500°C using bodies sintered from coprecipitated fine ZrO2-Y2O3 powders at varied temperatures. Tetragonal zirconia on the surfaces of bodies sintered at <1500°C transformed to the monoclinic phase at 100° to 400°C. Transformation behavior was strongly affected by grain size.  相似文献   

15.
In the system ZrO2-Al2O3, cubic ZrO2 solid solutions containing up to 40 mol% Al2O3 crystallize at low temperatures from amorphous materials prepared by the simultaneous hydrolysis of zirconium and aluminum alkoxides. The values of the lattice parameter, a, increase linearly from 0.5095 to 0.5129 nm with increasing Al2O3 content. At higher temperatures, the solid solutions transform into tetragonal ZrO2 and α-Al2O3. Pure ZrO2 crystallizes in the tetragonal form at 415° to 440°C.  相似文献   

16.
Thin films of crystalline TiO2 were deposited on self-assembled organic monolayers from aqueous TiCl4 solutions at 80°C; partially crystalline ZrO2 films were deposited on top of the TiO2 layers from Zr(SO4)2 solutions at 70°C. In the absence of a ZrO2 film, the TiO2 films had the anatase structure and underwent grain coarsening on annealing at temperatures up to 800°C; in the absence of a TiO2 film, the ZrO2 films crystallized to the tetragonal polymorph at 500°C. However, the TiO2 and ZrO2 bilayers underwent solid-state diffusive amorphization at 500°C, and ZrTiO4 crystallization could be observed only at temperatures of 550°C or higher. This result implies that metastable amorphous ZrTiO4 is energetically favorable compared to two-phase mixtures of crystalline TiO2 and ZrO2, but that crystallization of ZrTiO4 involves a high activation barrier.  相似文献   

17.
ZrO2–Al2O3 nanocrystalline powders have been synthesized by oxidizing ternary Zr2Al3C4 powders. The simultaneous oxidation of Al and Zr in Zr2Al3C4 results in homogeneous mixture of ZrO2 and Al2O3 at nanoscale. Bulk nano- and submicro-composites were prepared by hot-pressing as-oxidized powders at 1100°–1500°C. The composition and microstructure evolution during sintering was investigated by XRD, Raman spectroscopy, SEM, and TEM. The crystallite size of ZrO2 in the composites increased from 7.5 nm for as-oxidized powders to about 0.5 μm at 1500°C, while the tetragonal polymorph gradually converted to monolithic one with increasing crystallite size. The Al2O3 in the composites transformed from an amorphous phase in as oxidized powders to θ phase at 1100°C and α phase at higher temperatures. The hardness of the composite increased from 2.0 GPa at 1100°C to 13.5 GPa at 1400°C due to the increase of density.  相似文献   

18.
The subsolidus phase relations in the entire system ZrO2-Y2O3 were established using DTA, expansion measurements, and room- and high-temperature X-ray diffraction. Three eutectoid reactions were found in the system: ( a ) tetragonal zirconia solid solution→monoclinic zirconia solid solution+cubic zirconia solid solution at 4.5 mol% Y2O3 and ∼490°C, ( b ) cubic zirconia solid solutiow→δ-phase Y4Zr3O12+hexagonalphase Y6ZrO11 at 45 mol% Y2O3 and ∼1325°±25°C, and ( c ) yttria C -type solid solution→wcubic zirconia solid solution+ hexagonal phase Y6ZrO11 at ∼72 mol% Y2O3 and 1650°±50°C. Two ordered phases were also found in the system, one at 40 mol% Y2O3 with ideal formula Y4Zr3O12, and another, a new hexagonal phase, at 75 mol% Y2O3 with formula Y6ZrO11. They decompose at 1375° and >1750°C into cubic zirconia solid solution and yttria C -type solid solution, respectively. The extent of the cubic zirconia and yttria C -type solid solution fields was also redetermined. By incorporating the known tetragonal-cubic zirconia transition temperature and the liquidus temperatures in the system, a new tentative phase diagram is given for the system ZrO2-Y2O3.  相似文献   

19.
The Phase relationships in the system ZrO2-MgO were reinvestigated over a wide range of temperatures and compositions. The extent of the cubic solid solution field was determined with precise lattice parameter measurements and a high-temperature X-ray furnace using analyzed samples. DTA results show that the addition of MgO to ZrO2 decreases the transition temperature for monoclinic ⇌ tetragonal ZrO2 and 1 mol% of MgO is soluble in the monoclinic zirconia at ∼1070°C.The invariant eutectiod point is at 13.5 ± 0.3 mol% MgO at 1406°± 7°C, which is in fair agreement with previous results by Grain. The ordered phase Mg2Zr5O12 (δ-phase) can form metastably in cubic solid solutions at temperatures as low as 800°C after prolonged annealing. Evidence for the existence of the ordered phase MgZr6O13(γ-phase) was obtained by electron diffraction technique. Conditions for the formation of this phase are described. The ordered phases in this system are metastable and their formation is an intermediate step in the eutectoid decomposition of the cubic phase.  相似文献   

20.
Ultrafine tetragonal ZrO2 powder was prepared by hydrothermal treatment at 100 MPa of amorphous hydrous zirconia with distilled water and LiCl and KBr solutions. The resulting powder consisted of well-crystallized particles; at 200°C, the particle size was 16 nm and at 500°C, 30 nm. Under hydrothermal conditions tetragonal ZrO2 appears to crystallize topotactically on nuclei in the amorphous hydrous zirconia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号