首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
暂态稳定评估是保证电力系统安全稳定运行的关键点,为解决应用机器学习进行暂态稳定评估保守性不足的问题,提出了一种基于支持向量机和决策函数的暂态稳定评估方法。该方法以故障前潮流量为初始特征集,结合暂态安全稳定量化评估和统计理论方法,提取输入特征;通过支持向量机训练暂态稳定评估模型,得出评估模型的决策函数,并依据支持向量的决策值确定门槛值,保证评估结果保守性。新英格兰10机39节点测试系统和实际系统算例验证了所提方法的可靠性和实用性。  相似文献   

2.
基于支持向量机增量学习的电力系统暂态稳定评估   总被引:3,自引:0,他引:3  
基于传统支持向量机的暂态稳定评估模型,通常将所有的学习样本同时参与学习,如果有新样本加入,则需要对所有样本重新学习.针对传统暂态稳定评估模型不能在线更新的不足,提出了一种支持向量机增量学习的暂态稳定评估方法.该方法利用一种快速支持向量机增量学习方法,构造递归解法将新数据增加到解中,并对模型更新前的训练数据保持Karus...  相似文献   

3.
基于最小二乘支持向量机的电力系统暂态稳定在线预测   总被引:3,自引:0,他引:3  
利用最小二乘支持向量机进行在线轨迹预测时,反复的矩阵求逆是影响计算速度的重要因素.该文根据分块矩阵求逆定理对标准算法进行改进,以提高计算速度.为满足实际多机系统稳定预测的要求,引入轨迹聚合技术对多机轨迹进行聚合,进一步减少了计算量.在轨迹降阶的基础上,根据扩展等面积法则(EEAC),通过识别聚合轨迹的动态鞍点来判断轨迹的稳定性.以中国电力科学研究院36节点系统和中国西北电网为例进行仿真分析,从预测精度和计算时间两方面验证方法的有效性.  相似文献   

4.
在对比分析电力系统已有暂态稳定评估方法的基础上,提出一种以支持向量机模型为基础的动态训练算法.该方法将特征提取、样本训练融合在一起,动态产生一系列支持向量机模型,同时可以从维数较大的初始特征集中选择多组有效特征.实验表明,它可用于解决输入空间的可分性问题.在3机9节点以及16机68节点系统中的应用表明了该方法的有效性.  相似文献   

5.
提出一种基于正则化投影孪生支持向量机的暂态稳定评估方法。将基于传统支持向量机进行暂态稳定评估的高维二项式优化问题转化为两个低维二项式优化问题,并在投影孪生支持向量机的目标函数中引入正则项来改善评估稳定性。首先,构建由系统特征和投影能量函数特征组成的初始样本集,通过特征选择对初始特征进行压缩,获取可有效表征暂态稳定性的最优特征集。然后,基于正则化投影孪生支持向量机的思想将暂态稳定状态分成稳定类与不稳定类,寻找各稳定状态的最佳投影坐标轴,使稳定类投影到稳定类投影超平面上后尽可能地聚成簇,而不稳定类投影到稳定类投影超平面上后尽可能远离稳定类聚成的簇,降低暂态稳定评估的计算时间,同时借助遗传算法进行参数选择以提高准确率。最后,通过IEEE-145和南方电网算例的仿真分析,验证了所提方法的有效性和准确性。  相似文献   

6.
为了预防电压崩溃,需要评估系统运行状态到电压极限点的距离。该距离通常用潮流方程计算,但对于高维电力系统,这种方法计算速度较慢,难以满足实时电压稳定评估的要求。为减少评估时间,应用快速且可靠的评估技术是很重要的。本文提出了一种基于支持向量机的静态电压稳定评估方法,该方法充分发挥支持向量机在解决高维、非线性和有限样本问题方面体现出的优势,保证了电压稳定评估模型的泛化能力,具有较快的评估速度和较高的预测精度。在WSCC 9节点测试系统中的应用结果证明了该方法的有效性。  相似文献   

7.
为了预防电压崩溃,需要评估系统运行状态到电压极限点的距离.该距离通常用潮流方程计算,但对于高维电力系统,这种方法计算速度较慢,难以满足实时电压稳定评估的要求.为减少评估时间,应用快速且可靠的评估技术是很重要的.本文提出了一种基于支持向量机的静态电压稳定评估方法,该方法充分发挥支持向量机在解决高维、非线性和有限样本问题方面体现出的优势,保证了电压稳定评估模型的泛化能力,具有较快的评估速度和较高的预测精度.在WSCC9节点测试系统中的应用结果证明了该方法的有效性.  相似文献   

8.
提出了一种基于在线最小二乘支持向量机回归的电力系统暂态稳定预测方法。分析了标准最小二乘支持向量机回归算法用于在线预测时存在的主要问题,然后根据分块矩阵求逆定理对标准算法进行改进,实现支持向量的递推式求解,提高了算法的学习效率。为了满足实际多机系统在线稳定预测的要求,引入轨迹聚合技术对多机轨迹进行聚合,进一步减少了计算量。在轨迹降阶的基础上,根据EEAC理论,通过识别聚合轨迹的动态鞍点来判断轨迹的稳定性。最后,以电科院7机系统和我国西北电网为例进行仿真分析,从预测精度和计算时间两方面验证了方法的有效性。  相似文献   

9.
基于统计学习理论的电力系统暂态稳定评估   总被引:28,自引:12,他引:28  
该文利用基于结构风险最小化原理的支持向量机,结合装袋和近似推理,提出了电力系统暂态稳定评估模型的构造方法。该方法充分发挥支持向量机在解决有限样本、非线性及高维识别中体现出的优势,有效地提高了暂稳评估模型的泛化能力,并通过训练样本集重构解决了暂稳评估的多类识别问题,在该评估模型中利用样本规范化、装袋和近似推理提高了训练速度和预测结果的精度及稳定性。在IEEE39节点测试系统中的应用结果证明了该方法对暂态稳定评估的有效性。  相似文献   

10.
为了满足在线暂态稳定评估计算时效性要求,基于历史大数据提出了一种采用支持向量机的暂态稳定预想故障筛选方法。结合扩展等面积准则暂态稳定量化评估方法,基于系统功角稳定模式和机组参与因子选择特征量,按照关键特征量将历史运行方式聚类,针对失稳样本分布分别采用分类和回归2种预测方法,在预测模型适用性判别和模型匹配基础上获得稳定裕度预测值、分类稳定预测结果和可信度量测,采用交互式并行计算进行在线暂态稳定故障筛选,可以在较大程度上避免SVM暂态稳定评估方法固有的误判情况。基于某实际电网的算例验证了所提方法有效性。  相似文献   

11.
针对采用模式识别法进行电力系统暂态稳定评估时输入特征集构建困难和评估模型训练速度慢的问题,提出一种基于最小体积闭包椭球理论(Minimum Volume Enclosing Ellipsoid, MVEE)和最小二乘投影孪生支持向量机(Least Square Projection Twin Support Vector machine, LSPTSVM)的电力系统暂态稳定评估方法。首先,根据MVEE理论对系统轨迹信息进行优化处理,确定高维空间内包含所有轨迹信息的最小体积闭包椭球,并利用最小体积闭包椭球的物理属性构建输入特征集,可有效实现特征集降维。其次,在传统投影孪生支持向量机的目标函数中引入正则化项,并改进评估模型的内部约束条件,提高模型的求解速度,达到大规模电力系统的计算效率需求。最后,通过对IEEE-39和IEEE-145节点系统的算例分析,验证所提方法的有效性与可行性。  相似文献   

12.
介绍了基于稀疏贝叶斯学习理论的模式识别技术相关向量机及其分类器,在此基础上构建了电力系统暂态稳定评估模型.以EPRI36电力系统暂态稳定仿真数据为例,在相同的数据输入和相同的仿真环境下同时构建相关向量机和支持向量机2种暂态稳定评估模型.仿真预测计算显示,作为一种全新的概率学习模型,相关向量机不仅得到了比支持向量机更高的预测精确度,而且还能得到支持向量机无法完成的概率性预测和更高的稀疏性计算.  相似文献   

13.
暂态稳定评估的特征选择是一个典型的组合优化问题。针对该问题解的离散性特点,提出基于蚁群优化算法的特征选择方法。该方法以最小二乘支持向量机作为暂态稳定评估分类器,以分类错误率最低和特征选择比率最小为优化目标,通过二进制编码形式的蚁群优化算法实现特征的选择。这样能选择出计及分类器特性的最优特征子集,减少了特征维数,提高了分类正确率。通过对综合程序EPRI-36节点系统的仿真计算,验证了该方法的有效性。  相似文献   

14.
采用二进粒子群优化算法进行暂态稳定评估的特征选择,粒子群中每个粒子代表一个待选择的特征集,结合最小二乘支持向量机使用该特征集对所对应的样本集进行分类,分类正确率作为该粒子的适应度。首先通过二进粒子群优化实现特征的选择,然后将优选后的特征作为暂态稳定评估的输入,利用最小二乘支持向量机构造分类器进行暂态稳定评估。通过对EPRI-36节点系统的仿真计算,结果表明该方法能够在显著减少输入特征维数的同时大大提高最终判别结果的正确率。  相似文献   

15.
为提高电力系统暂态稳定评估单个模型的准确率,研究了基于元学习策略的暂态稳定评估问题,提出了支持向量机、决策树、朴素贝叶斯和K最近邻法作为基学习算法,线性回归为元学习算法的Stacking评估模型。该模型将上述基学习算法的概率输出作为新训练数据的输入特征,同时保留原始的类标识。线性回归算法在新训练集上学习得到最终暂态稳定评估结果。新英格兰39节点测试系统和IEEE50机测试系统上仿真实现了该模型,仿真结果证明所提模型比单个模型的评估性能更好,为电力系统暂态稳定评估提供了新的思路。  相似文献   

16.
基于机器学习的暂态稳定评估方法主要采用监督学习方法,为了解决监督学习方法所需的有标签样本难以获取的问题,提出基于三体训练-稀疏堆叠自动编码器(Tri-training-SSAE)半监督学习算法的电力系统暂态稳定评估方法。构建基于堆叠稀疏自动编码器的暂态稳定评估模型;在传统的三体训练过程中加入伪标签样本置信度判断,以减小噪声数据对模型训练的影响;以堆叠稀疏自动编码器为基分类器构建三体训练-稀疏堆叠自动编码器模型,利用大量的无标签样本提高模型的泛化能力。通过IEEE 39节点系统与华东某省级电网进行分析验证,结果表明,所提方法在有标签样本数较少时具有更高的评估准确度。  相似文献   

17.
深度学习在暂态稳定评估中发挥着越来越重要的作用,然而电网规模逐渐扩大导致数据出现维数灾难,这对模型的性能提出了更高的要求.目前,暂态稳定特征构建需要依靠人工经验,具有主观性;深度学习的模型在设计和训练上耗时、耗力.针对以上两点,结合极限梯度提升(XGBoost)算法和实体嵌入(EE)网络,提出了一种基于XGBoost-...  相似文献   

18.
基于深度学习的暂态稳定评估与严重度分级   总被引:1,自引:0,他引:1  
提出一种安全域概念下的堆叠降噪自动编码器和支持向量机集成模型相结合的暂态稳定评估方法。将故障前的潮流量作为输入,利用堆叠降噪自动编码器对输入量进行多层抽象表达,使用提取的各层特征训练支持向量机;建立支持向量机集成分类模型进行暂态稳定评估,对评估结果进行可信度分析,将输入空间划分为稳定区、边界区和失稳区;利用效用理论结合所提出的暂态稳定裕度指标对运行方式进行严重度分级。算例结果表明,所提暂态稳定评估方法具有更高的评估准确率和一定的泛化能力;所提严重度分级方法能够直观表现不同运行方式的危险程度。  相似文献   

19.
遗传算法在暂态稳定评估输入特征选择中的应用   总被引:5,自引:4,他引:5       下载免费PDF全文
针对主成分分析中利用传统方法进行特征选择的缺陷,提出了基于遗传算法的特征选择方法。选择反映电力系统运行状态的特征变量,建立暂态稳定评估模型;为了提高数据处理的效率,首先对原始数据进行了动态聚类分析;对数据进行主成分分析后,以类内类间距离判据作为适应度函数,采用二进制编码形式的遗传算法进行特征选择。通过对3机9节点和10机39节点新英格兰系统的计算,验证了所选方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号