首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
推荐系统中的冷启动问题研究综述   总被引:4,自引:0,他引:4  
推荐系统能够快捷、准确地定位用户真正需要的信息,解决网络信息过载问题。其中协同过滤推荐技术是推荐系统应用最广泛和成功的技术,但该技术面临冷启动问题的挑战。本文分析冷启动问题的产生原因,阐述研究冷启动问题的意义,重点总结解决冷启动问题的算法现状,分析比较它们的性能差异和各自存在的优缺点,从而便于使用者在解决冷启动问题时对算法的选择和使用。  相似文献   

2.
3.
推荐系统研究综述   总被引:1,自引:0,他引:1  
近年来,推荐系统得到前所未有的关注和发展。作为电子商务的核心技术,推荐系统在帮助消费者便捷的找到所需的潜在商品同时也促进商品的销售,对于消费者和商品生产者来说都至关重要。推荐系统可以利用用户的行为信息、社交网络信息、标签数据等来提升推荐系统的质量。随着推荐系统的快速发展,如何评价推荐系统以及如何提高推荐系统的可解释性也成为热门的研究课题。从推荐算法、评测指标和可解释性三个部分对推荐系统的研究现状进行分析总结。  相似文献   

4.
该文首先分析了个性化旅游推荐系统的数据来源,并介绍了用户行为数据、用户标签数据、上下文信息和基于社交网络数据等推荐技术近年来的研究进展.其次,分析了能提升推荐性能的混合推荐技术以及满足多约束场景的基于约束的推荐技术,介绍了相关领域的最新研究成果.最后,展望了个性化旅游推荐技术研发的发展方向.  相似文献   

5.
随着人们生活水平的提高,旅游已成为一项普遍的休闲活动,进而推动了旅游推荐方面技术的研究。与传统推荐系统相比,除了考虑游客和旅游产品的相关特征之外,旅游推荐系统的推荐质量在很大程度上受到位置、时间、天气、游客社交群体等上下文信息的影响。本文首先给出上下文感知旅游推荐系统的总体框架;然后对位置、时间、游客社会化网络和多维上下文等4类典型的上下文信息在旅游推荐系统中的应用进行了详细考察,并对综合应用各种上下文信息的旅游推荐系统进行了分析;从旅游推荐产品的角度对推荐系统进行分类考察;最后讨论了上下文感知旅游推荐系统目前面临的重点和难点问题,指出下一步的研究方向。  相似文献   

6.
推荐系统可以帮助网民从大量纷繁的信息中找到目标信息,能有效提高网民信息检索能力,然而推荐系统存在数据稀疏性、冷启动以及系统性能方面的问题。为解决这方面的问题,提出将社交关系应用于推荐系统,该方法是提高推荐准确性的一个重要途径,在多年的科研实践中取得了重要进展,因此该研究方向也日益成为众多学者关注的领域,有关这方面的研究也越来越活跃。通过对社会化推荐系统概念进行梳理,对社会化推荐系统与传统推荐系统进行比较,回顾总结了社会化推荐系统的研究现状,希望能从研究现状中找出新规律,寻求新的突破点,并对社会化推荐系统的发展趋势进行展望,以期对后来研究者有所帮助。  相似文献   

7.
随着互联网和信息计算的飞速发展,衍生了海量数据,我们已经进入信息爆炸的时代。网络中各种信息量的指数型增长导致用户想要从大量信息中找到自己需要的信息变得越来越困难,信息过载问题日益突出。推荐系统在缓解信息过载问题中起着非常重要的作用,该方法通过研究用户的兴趣偏好进行个性化计算,由系统发现用户兴趣进而引导用户发现自己的信息需求。目前,推荐系统已经成为产业界和学术界关注、研究的热点问题,应用领域十分广泛。在电子商务、会话推荐、文章推荐、智慧医疗等多个领域都有所应用。传统的推荐算法主要包括基于内容的推荐、协同过滤推荐以及混合推荐。其中,协同过滤推荐是推荐系统中应用最广泛最成功的技术之一。该方法利用用户或物品间的相似度以及历史行为数据对目标用户进行推荐,因此存在用户冷启动和项目冷启动问题。此外,随着信息量的急剧增长,传统协同过滤推荐系统面对数据的快速增长会遇到严重的数据稀疏性问题以及可扩展性问题。为了缓解甚至解决这些问题,推荐系统研究人员进行了大量的工作。近年来,为了提高推荐效果、提升用户满意度,学者们开始关注推荐系统的多样性问题以及可解释性等问题。由于深度学习方法可以通过发现数据中用户和项目之间的非线性关系从而学习一个有效的特征表示,因此越来越受到推荐系统研究人员的关注。目前的工作主要是利用评分数据、社交网络信息以及其他领域信息等辅助信息,结合深度学习、数据挖掘等技术提高推荐效果、提升用户满意度。对此,本文首先对推荐系统以及传统推荐算法进行概述,然后重点介绍协同过滤推荐算法的相关工作。包括协同过滤推荐算法的任务、评价指标、常用数据集以及学者们在解决协同过滤算法存在的问题时所做的工作以及努力。最后提出未来的几个可研究方向。  相似文献   

8.
《软件工程师》2020,(2):5-8
随着互联网上信息量呈指数增长,用户从大量信息中挑选目标信息变成了一种复杂且耗时的作业。为用户解决因信息量爆炸而不能快速获得目标信息的方法就是构建推荐系统。深度学习作为当前热门的研究话题,在许多领域都取得了突破性的成就。利用深度学习挖掘用户和物品的隐含属性,构建用户和物品的关系模型,可以提高个性化推荐的精确度。本文介绍了推荐系统和深度学习,分析了深度学习在推荐领域的应用现状并做出了展望。  相似文献   

9.
伴随着电子商务平台和新型数字媒体服务迅速发展,网络数据规模持续增长,数据类型呈现多样化,如何从大规模数据中挖掘有价值的信息,已经成为信息技术的一项巨大挑战.推荐系统能够缓解\"信息过载\"问题,挖掘数据潜在价值,将个性化信息推送给有需要的用户,提高信息利用率.深度学习的表征能力与推荐系统相融合,有助于深层次地挖掘用户需求,...  相似文献   

10.
本文介绍了用户搜索中查询推荐技术的相关概念、研究现状;深入分析了目前常见的推荐算法及推荐系统中的隐私保护问题;最后,归纳了查询推荐技术的研究热点。  相似文献   

11.
Collaborative recommenders rely on the assumption that similar users may exhibit similar tastes while content-based ones favour items that found to be similar with the items a user likes. Weak related entities, which are often considered to be useful, are neglected by those similarity-driven recommenders. To take advantage of this neglected information, we introduce a novel dissimilarity-based recommender that bases its estimations on degrees of dissimilarities among items’ attributes. However, instead of using the proposed recommender as a stand-alone method, we combine it with similarity-based ones to maintain the selective nature of the latter while detecting, through our recommender, information that may have been overlooked. Such combinations are established by IANOS, a proposed framework through which we increase the accuracy of two popular similarity-based recommenders (Naive Bayes and Slope-One) after their combination with our algorithm. Improved accuracy results in experimentation on two datasets (Yahoo! Movies and Movielens) enhance our reasoning. However, the proposed recommender comes with an additional computational complexity when combined with other techniques. By using Hadoop technology, we developed a distributed version of IANOS through which execution time was reduced. Evaluation on IANOS procedures in terms of time performance endorses the use of distributed implementations.  相似文献   

12.
Recommender systems in e-Tourism normally focus on helping tourists to select appropriate destinations. A related problem that has been less explored in the literature is how to provide personalised recommendations of cultural and leisure activities when the tourist has already arrived at the destination. This paper presents a novel recommendation system, Turist@, which addresses this issue. Its agent-based modular design permits to model different kinds of activities in a flexible way, and allows the implementation of a location-aware front-end in the mobile device of the user. Special care has been put in the recommendation engine, implemented via a specialised Recommender Agent. It incorporates a mixture of content-based and collaborative recommendation strategies, thus avoiding the drawbacks of each individual method, and is able to perform recommendations in heterogeneous scenarios. Recommendations take into account user profiles which are implicitly updated after the analysis of user actions (e.g., queries, evaluations). The system has been successfully deployed and tested in the World Heritage-listed city of Tarragona.  相似文献   

13.
    
In this research we investigated the role of user controllability on personalized systems by implementing and studying a novel interactive recommender interface, SetFusion. We examined whether allowing the user to control the process of fusing or integrating different algorithms (i.e., different sources of relevance) resulted in increased engagement and a better user experience. The essential contribution of this research stems from the results of a user study (N=40) of controllability in a scenario where users could fuse different recommendation approaches, with the possibility of inspecting and filtering the items recommended. First, we introduce an interactive Venn diagram visualization, which combined with sliders, can provide an efficient visual paradigm for information filtering. Second, we provide a three-fold evaluation of the user experience: objective metrics, subjective user perception, and behavioral measures. Through the analysis of these metrics, we confirmed results from recent studies, such as the effect of trusting propensity on accepting the recommendations and also unveiled the importance of features such as being a native speaker. Our results present several implications for the design and implementation of user-controllable personalized systems.  相似文献   

14.
陈雅茜 《计算机应用研究》2012,29(11):4250-4253
随着计算机网络和多媒体技术的迅速普及,数字音乐消费已经成为人们日常生活中的常见活动,音乐推荐系统也因此成为了推荐系统和电子商务领域的一大研究热点。在对现有音乐推荐系统调研的基础上,重点研究公共环境下的混合型音乐推荐系统的设计和实现;将音乐特征和语境信息相结合,提出了一种新颖的混合型音乐推荐算法。为保证实际应用环境中音乐消费行为的灵活性,系统实现了投票和DJ两种推荐模式。该系统在实验室及实地测试中均取得了较高的用户满意度。  相似文献   

15.
16.
Nowadays,more and more users share real-time news and information in micro-blogging communities such as Twitter,Tumblr or Plurk.In these sites,information is shared via a followers/followees social network structure in which a follower will receive all the micro-blogs from the users he/she follows,named followees.With the increasing number of registered users in this kind of sites,finding relevant and reliable sources of information becomes essential.The reduced number of characters present in micro-posts along with the informal language commonly used in these sites make it difficult to apply standard content-based approaches to the problem of user recommendation.To address this problem,we propose an algorithm for recommending relevant users that explores the topology of the network considering different factors that allow us to identify users that can be considered good information sources.Experimental evaluation conducted with a group of users is reported,demonstrating the potential of the approach.  相似文献   

17.
Recommender systems are currently being applied in many different domains. This paper focuses on their application in tourism. A comprehensive and thorough search of the smart e-Tourism recommenders reported in the Artificial Intelligence journals and conferences since 2008 has been made. The paper provides a detailed and up-to-date survey of the field, considering the different kinds of interfaces, the diversity of recommendation algorithms, the functionalities offered by these systems and their use of Artificial Intelligence techniques. The survey also provides some guidelines for the construction of tourism recommenders and outlines the most promising areas of work in the field for the next years.  相似文献   

18.
采用用户-景点-线路三部图来描述用户的行为,通过改进的随机行走算法给用户推荐合适的旅游线路,可以提供准确的旅游线路推荐并有效地解决新的线路难以推荐的问题。通过对景点的聚类,减小了数据稀疏性对推荐带来的影响并避免了过拟合问题。实验结果表明,与传统的方法相比,本文提出的算法具有较好的排序准确度,特别是对稀疏度较高的用户,优势更明显。  相似文献   

19.
唐哲  丁二玉  骆斌  陈世福 《计算机科学》2005,32(12):193-196
推荐系统(Recommender System)被电子商务站点用来向顾客提供信息以帮助顾客选择产品,其基本思想是以统计结果或者顾客以前的行为记录为依据,推测顾客未来可能的行为并给出相应的推荐。本文对基于传统技术和Web mining技术的推荐系统进行了简要综述,同时描述了基于Web mining技术的推荐系统的工作流程,重点分析了应用于推荐系统的各种具体Web mining技术及其算法比较。  相似文献   

20.
    
Recommender systems have significantly developed in recent years in parallel with the witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) technologies. Accordingly, as a consequence of IoT and AI, multiple forms of data are incorporated in these systems, e.g. social, implicit, local and personal information, which can help in improving recommender systems’ performance and widen their applicability to traverse different disciplines. On the other side, energy efficiency in the building sector is becoming a hot research topic, in which recommender systems play a major role by promoting energy saving behavior and reducing carbon emissions. However, the deployment of the recommendation frameworks in buildings still needs more investigations to identify the current challenges and issues, where their solutions are the keys to enable the pervasiveness of research findings, and therefore, ensure a large-scale adoption of this technology. Accordingly, this paper presents, to the best of the authors’ knowledge, the first timely and comprehensive reference for energy-efficiency recommendation systems through (i) surveying existing recommender systems for energy saving in buildings; (ii) discussing their evolution; (iii) providing an original taxonomy of these systems based on specified criteria, including the nature of the recommender engine, its objective, computing platforms, evaluation metrics and incentive measures; and (iv) conducting an in-depth, critical analysis to identify their limitations and unsolved issues. The derived challenges and areas of future implementation could effectively guide the energy research community to improve the energy-efficiency in buildings and reduce the cost of developed recommender systems-based solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号