首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diiffusion model describing internal diiffusion of moisture within a grain kernel during drying and tempering stages was incorporated in the cross-flow drying model to simulate the recirculating circular grain dryer with drying and tempering stages. Experiments were conducted on an experimental prototype recirculating circular grain dryer for wheat and rough rice drying. The simulated grain temperature and moisture content were compared with the experimental data of drying wheat and rough rice, the maximum deviation of the outlet grain temperature was 5°C and the maximum deviation ofthe final grain moisture content was 0.3% w.b. The simulating program for recirculating circular grain dryer was used for analyzing the effects of structure parameters and hot air parameters on the dryer performance. Recommendations for design of the recirculating circular grain dryers are drawn from the experiments and simulation.  相似文献   

2.
Abstract

This work obtains thin-layer drying data for rough rice from 108 treatments. A thin-layer drying equation is also derived using these data with drying air absolute humidity, drying air temperature, tempering time interval and drying time interval as the independent variables. In addition, an intermittent drying equation is developed to predict the drying behavior of rough rice in a re-circulating type rice dryer.  相似文献   

3.
Drying and tempering models for paddy drying by a fluidised bed technique have been developed to describe the moisture movement inside a single paddy kernel. The grain shape was considered as a finite cylinder. The internal diffusion is an important contribution to control the drying rate of paddy. The dependence of effective diffusion coefficient on drying temperature can be adequately explained based on Arrhenius form. The parameters of this equation were evaluated in the range of temperatures between 110°C and 170°C by using the regression analysis with 189 experimental drying data. As compared with no tempering, the faster drying rate can be obtained by tempering treatment between drying stages. The effect of degrees of tempering on determining the moisture reduction in the second stage has also been explored. According to the simulation results, a prediction equation of the required tempering time for the tempering index of 0.95 has been established in which the drying air temperature, initial moisture content and drying time are taken into account. The tempering time for 35 min is recommended for the continuous fluidised bed dryers being operated in rice mills.  相似文献   

4.
Information on mechanical properties of parboiled brown rice kernels upon impinging stream drying, which is important for effective control of kernel fissure and head rice yield, is reported. Experiments were performed at the drying temperatures of 130, 150, and 170°C; inlet air velocity of 20?m/s; impinging distance of 5?cm and paddy feed rate of 40?kgdry_paddy/h. Parboiled paddy was dried for up to seven cycles. Between each drying cycle, the paddy was tempered for a period of either 0 (without tempering) or 30?min. The moisture evaporation rate was noted to be very high during the first two drying cycles and rapidly dropped in the later drying cycles. When tempering was included after a particular drying cycle, the drying rate in a subsequent cycle was higher than without tempering. At the kernel moisture contents immediately after drying of 25.3–47.5% (d.b.), the drying temperature and existence of tempering did not affect the mechanical properties although microcracks were formed in the kernels. However, both factors played a more important role on the mechanical properties when the kernels were evaluated at 16% (d.b.). The head rice yield correlated well with the tensile strength of the kernels.  相似文献   

5.
The paper presents new data for thin-layer drying characteristics of Thai long grain rough rice measured under various conditions of drying air temperature (35 to 60 °C), drying air relative humidity (30 to 70 % ) and the initial moisture content of rough rice (20 to 40 % dry basis). Empirical equations were developed using the instantaneous weight, the weight loss and drying time, with temperature, relative humidity and initial moisture content of rough rice as the independent variables. A computer program was developed to simulate the deep-bed drying process. The thin-layer drying equation developed before was used in the computer simulation. Experimental data from the fixed bed dryer were compared with the results from the calculation.  相似文献   

6.
Closed-loop drying systems are an attractive alternative to conventional drying systems because they provide a wide range of potential advantages. Consequently, type of drying process is attracting increased interest. Rotary drying of wood particles can be assumed as an incorporated process involving fluid–solid interactions and simultaneous heat and mass transfer within and between the particles. Understanding these mechanisms during rotary drying processes may result in determination of the optimum drying parameters and improved dryer design. In this study, due to the complexity and nonlinearity of the momentum, heat, and mass transfer equations, a computerized mathematical model of a closed-loop triple-pass concurrent rotary dryer was developed to simulate the drying behavior of poplar wood particles within the dryer drums. Wood particle moisture content and temperature, drying air temperature, and drying air humidity ratio along the drums lengths can be simulated using this model. The model presented in this work has been shown to successfully predict the steady-state behavior of a concurrent rotary dryer and can be used to analyze the effects of various drying process parameters on the performance of the closed-loop triple-pass rotary dryer to determine the optimum drying parameters. The model was also used to simulate the performance of industrial closed-loop rotary dryers under various operating conditions.  相似文献   

7.
A method for rapid drying of parboiled paddy via the use of an impinging stream dryer was proposed and assessed. The effects of the drying air temperature, number of drying cycles, as well as time of tempering between each drying cycle on the moisture reduction, head rice yield, and whiteness index of the dried parboiled paddy were studied. The drying experiments were carried out at drying air temperatures of 130, 150, and 170°C; inlet air velocity of 20 m/s; impinging distance of 5 cm; and paddy feed rate of 40 kgdry_paddy/h. Parboiled paddy was dried for up to seven cycles. Between each drying cycle the parboiled paddy was tempered for a period of either 0 (no tempering), 15, 30, 60, or 120 min. After impinging stream drying, paddy was ventilated by ambient air flow until its moisture content reached 16% (db). Moisture reduction of the paddy was noted to depend on both the impinging stream drying temperature and tempering time. Drying at a high temperature along with tempering for a suitable period of time could maintain the head rice yield of the paddy at a level similar to that of the reference parboiled paddy. To avoid discoloration and low head rice yield, parboiled paddy should not be dried at a temperature higher than 150°C and should be tempered for at least 30 min.  相似文献   

8.
This paper concerns with heterogeneous modeling of deep-bed grain dryers based on two-phase model by taking into account coupled heat and mass transfer within grains. This model also consider axial mass and heat dispersion in the fluid phase. The dynamic two-phase equations are solved numerically by finite difference with alternating direction implicit method algorithm, and then applied to simulate humidity and temperature profile of drying gas across dryers together with moisture content and temperature of grains. The capabilities of these models were compared with experimental data obtained from available literatures, under drying conditions such as temperature and absolute humidity of drying gas and moisture content of grains. The simulation results show that the dynamic of corn drying within the bed is well predicted by the two-phase model.  相似文献   

9.
ABSTRACT

The paper presents new data for thin-layer drying characteristics of Thai long grain rough rice measured under various conditions of drying air temperature (35 to 60?°C), drying air relative humidity (30 to 70 % ) and the initial moisture content of rough rice (20 to 40 % dry basis). Empirical equations were developed using the instantaneous weight, the weight loss and drying time, with temperature, relative humidity and initial moisture content of rough rice as the independent variables. A computer program was developed to simulate the deep-bed drying process. The thin-layer drying equation developed before was used in the computer simulation. Experimental data from the fixed bed dryer were compared with the results from the calculation.  相似文献   

10.
This paper presents the analysis of a coupled heat and mass transfer process in a fixed-bed solar grain dryer. Measurements of moisture concentration and air humidity along with temperature measurements were carried out in a solar grain dryer located in Port Harcourt, Nigeria, at the latitude of 4.858°N and longitude of 8.372°E. The process was also modelled, mathematically, by a set of partial differential equations that were coupled within the grain and through the grain boundary with the hot drying air. A finite difference scheme was used to obtain the moisture concentration and air humidity, and temperature fields within the grain and drying air. There was good agreement between the theoretical and experimental results at specified Biot and Posnov numbers, and varying Fourier number. The effects of time, space, and key model parameters such as the Biot and Posnov numbers and the initial conditions of the grains and drying air were simulated and discussed. The results from this study can be used to specify the design parameters for solar grain dryers.  相似文献   

11.
ABSTRACT

The solution of classical diffusion equation based on the assumption of average moisture diffusion coefficient did not adequately represent natural convection drying of rough rice in thin vertical columns exposed on both sides to hot air. Instantaneous moisture diffusivity coefficients determined from experimental drying curves decreased continuously with an increase in exposure duration and were linearly related to moisture ratio. The proponionality constant which was called apparent moisture diffusion coefficient was distinctly related to air temperature, relative humidity, and initial moisture content of rough rice. The modified moisture diffusion model using the instantaneous moisture diffusion coefficient was found to best represent the moisture removal from bulk rough rice.  相似文献   

12.
Semicontinuous industrial tunnel dryers were simulated and optimized for concurrent and countercurrent configurations. Mass and energy balances for the solid and gas phase were used to describe the operation of the dryer and a semi-empirical model for the mass transfer rate; the drying rate equation parameters were fitted using experimental data for Italy grapes. The simulation programs coded in Fortran 90 calculate the moisture and temperature profiles for grapes and humidity and temperature for air throughout the tunnel, cycle time, recirculation ratio, thermal load, and fresh air flow rate. The optimization minimizes the energy input considering the degradation of ascorbic acid in the fruit as the main constraint.  相似文献   

13.
Abstract

Three tempering approaches were followed after drying rough rice at 16.3% and 20.5% initial moisture contents (IMCs) using 57?°C/13% RH air at an airflow of 0.56 (m3/s)/m2 for 30, 60, and 90?min in an experimentally simulated cross-flow drying column. For the longer drying durations, post-tempering head rice yields were consistently less when the interstitial air from rice from different cross sections of the drying column was allowed to “interact” during tempering than when the rice from these different cross sections was tempered separately; this effect was more prominent at the greater rice IMC. RH of the interstitial air during tempering was measured and used to estimate the minimum tempering durations required for the different tempering approaches.  相似文献   

14.
Intermittent drying of paddy rice is fully investigated both theoretically and experimentally. A model is developed to describe simultaneous heat and mass transfer for the drying stages and mass transfer for the tempering ones. The model is considered for both cylindrical and spherical geometries. The model excels in considering non-constant paddy rice and air physical properties as well as surface vaporization and convection. The consequent equations are numerically solved with finite-difference method of line using implicit Runge–Kutta. Furthermore, a set of experiments is conducted in a laboratory-scale fluidized bed dryer to estimate the moisture diffusivity of rice and evaluate the effects of different parameters. Two correlations for moisture diffusivity are derived for each geometry based on the experimental results. It is noteworthy that the geometry choice leads to significantly different moisture diffusivities. As a result, the diffusivity values obtained for spherical presentation is 2.64 times greater than that of cylinder. Moreover, the cylindrical model fits the experimental results more precisely, especially for tempering stage (AARDcyl = 1.03%; AARDsph = 1.53%). Model results reveal that thermal equilibrium is quickly reached within the first 2 min. Air velocity shows no influential effect on drying upon establishment of fluidized condition. In addition, drying rate is drastically improved after applying the tempering stage. A definition for tempering stage efficiency is also proposed which shows that 3 h tempering will be 80% efficient for the studied case. Rising temperature significantly improves the drying rate, while it does not contribute much in the tempering efficiency.  相似文献   

15.
ABSTRACT

A mathematical model of a heat pump fruit dryer was developed to study the performance of heat pump dryers. Using the moisture content of papaya glace' drying, the refrigerant temperature at the evaporator and condenser and the performance, was verified. It was found that the simulated results using closed loop heat pump dryer were close to the experimental results. The criteria for evaluating the performance were specific moisture extraction rate and drying rate. The results showed that ambient conditions affected significantly on the performance of the open loop dryer and the partially closed loop dryer. Also, the fraction of evaporator bypass air affected markedly on the performance of all heat pump dryers. In addition, it was found that specific air flow rate and drying air temperature affected significantly the performance of all heat pump dryers.  相似文献   

16.
ABSTRACT

Rough rice at about 21% (wet basis) was dried at various conditions of temperatures and evaporating capacities of air. The influence of both parameters on drying rate has been studied. At high temperatures, high drying rates can be achieved with low evaporating capacities. In addition, desorption isotherms of rough rice were measured at 35, 60 and 85°C and the experimental isotherms data were fitted using a modified Pfost equation.

A compartmental model was developed to simulate the grain moisture content. Heat and mass transfer coefficients were optimized using a Nelder & Mead method. Internal mass transfer coefficient was written as an exponential function of the average moisture content and temperature of the grain and the external mass transfer coefficient as a function of air temperature. The compartmental approach predicts very well the average moisture content with a mean error of about 5% in static and dynamic conditions.  相似文献   

17.
A spray dryer is the ideal equipment for the production of food powders because it can easily impart well-defined end product characteristics such as moisture content, particle size, porosity, and bulk density. Wall deposition of particles in spray dryers is a key processing problem and an understanding of wall deposition can guide the selection of operating conditions to minimize this problem. The stickiness of powders causes the deposition of particles on the wall. Operating parameters such as inlet air temperature and feed flow rate affect the air temperature and humidity inside the dryer, which together with the addition of drying aids can affect the stickiness and moisture content of the product and hence its deposition on the wall. In this article, an artificial neural network (ANN) method was used to model the effects of inlet air temperature, feed flow rate, and maltodextrin ratio on wall deposition flux and moisture content of lactose-rich products. An ANN trained by back-propagation algorithms was developed to predict two performance indices based on the three input variables. The results showed good agreement between predicted results using the ANN and the measured data taken under the same conditions. The optimum condition found by the ANN for minimum moisture content and minimum wall deposition rate for lactose-rich feed was inlet air temperature of 140°C, feed rate of 23 mL/min, and maltodextrin ratio of 45%. The ANN technology has been shown to be an excellent investigative and predictive tool for spray drying of lactose-rich products.  相似文献   

18.
This article concerns the modelling and simulation of a deep-bed grain dryer in a large diameter-column. Two-dimensional (2D) models of deep-bed grain dryers were built by considering simultaneously momentum, heat, and mass transfer in the drying phase together with coupled heat and mass balance in the grain phase. The dynamic equations are solved numerically by using finite difference method. The momentum equations are applied to simulate pressure drop and velocity field of the drying air across the bed. The mass and heat balance in the two phases determine the profile of temperature and moisture content in both phases. Further, drying rate curves for various temperature of inlet drying gas together with moisture content of grain were simulated. The simulated profiles are in close agreement with experimental data.  相似文献   

19.
During rough rice drying, gradients of moisture content and glass transition temperature cause thermal and mechanical stresses inside the kernel. These stresses eventuate to kernel fissuring during the milling process. In this study, convective drying of Hashemi (long grain) rough rice was applied to investigate the effect of continuous and stepwise changes in air temperature on stress cracking index and process duration. Toward this objective, the concepts of glass transition and analysis of moisture contents distributions within the rice kernel were determined through a numerical modeling of mass transfer. For stepwise temperature change, the drying experiments were conducted at temperatures above the glass transition temperature. Results indicated that the stress cracking index under stepwise temperature change conditions (i.e., within the rubbery state) was reduced compared to the continuous mode probably due to a drip in the moisture content gradients created inside the kernels during the drying process. Moreover, the drying duration significantly was shortened when the kernel was dried within the rubbery state due to faster diffusion moisture within the kernel.  相似文献   

20.
Drying of high-moisture paddy was examined experimentally under stationary and fluidized bed with and without intervening rest periods. Introduction of a rest period between first and second stage of drying improved drying rate and lowered the energy requirement and increased head rice yield. Fluidization further improved the overall drying process. A single-term drying diffusion equation was suitably fitted to first, rest, and second stage drying data of fluidized and stationary bed by applying nonlinear regression method and effective diffusion coefficients were evaluated. During the period of rest stage, paddy grain released a considerable amount of moisture as an effect of residual grain temperature. An appropriate moisture ratio at which resting should start and the length of resting were evaluated by measuring changes in relative humidity in the headspace of mass of paddy and also from the diffusion coefficient values obtained from the experimental drying data. Resting duration between 75 and 90 min at moisture ratio around 0.715 was found suitable for overall good performance in both fluidized and stationary bed drying. A considerable amount of energy (21–44%) can be saved by providing a rest period from 30 to 120 min between the two stages of drying. Fluidization further reduces (≈ 50% against continuous drying under stationary bed) the energy requirement. No significant difference was found in head rice yield obtained from fluidized and stationary bed experiments, though discontinuing drying by providing intervening rest periods considerably improved the percentage head rice when compared with the results from continuous drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号