首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TCP Throughput Enhancement over Wireless Mesh Networks   总被引:1,自引:0,他引:1  
TCP is the predominant technology used on the Internet to support upper layer applications with reliable data transfer and congestion control services. Furthermore, it is expected that traditional TCP applications (e.g., Internet access) will continue to constitute the major traffic component during the initial deployment of wireless mesh networks. However, TCP is known for its poor throughput performance in wireless multihop transmission environments. For this article, we conducted simulations to examine the impact of two channel interference problems, the hidden terminal and exposed terminal, on TCP transmissions over wireless mesh networks. We also propose a multichannel assignment algorithm for constructing a wireless mesh network that satisfies the spatial channel reuse property and eliminates the hidden terminal problem. The simulation results demonstrate the effectiveness of the proposed approach in improving the performance of TCP in wireless multihop networks.  相似文献   

2.
In this paper, we propose an analytical cross‐layer model for a Transmission Control Protocol (TCP) connection running over a covariance‐stationary wireless channel with a completely reliable Automatic Repeat reQuest scheme combined with Forward Error Correction (FEC) coding. Since backbone networks today are highly overprovisioned, we assume that the wireless channel is the only one bottleneck in the system which causes packets to be buffered at the wired/wireless interface and dropped as a result of buffer overflow. We develop the model in two steps. At the first step, we consider the service process of the wireless channel and derive the probability distribution of the time required to successfully transmit an IP packet over the wireless channel. This distribution is used at the next step of the modeling, where we derive expressions for the TCP long‐term steady‐state throughput, the mean round‐trip time, and the spurious timeout probability. The developed model allows to quantify the joint effect of many implementation‐specific parameters on the TCP performance over both correlated and non‐correlated wireless channels. We also demonstrate that TCP spurious timeouts, reported in some empirical studies, do not occur when wireless channel conditions are covariance‐stationary and their presence in those measurements should be attributed to non‐stationary behavior of the wireless channel characteristics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes the performance of eigenbeam multiple-input multiple-output (MIMO) with transmit antenna selection using orthogonal frequency-division multiplexing (OFDM), as measured in a testbed implemented using field-programmable gate arrays (FPGAs); it also targets the downlink performance improvement of wireless local area networks (LANs). For this verification, we employ a determinant-based simple transmit antenna selection approach based on the estimated instantaneous MIMO channel matrix. We show extensive experiments on the testbed to confirm the performance of eigenbeam MIMO-OFDM with transmit antenna selection in the three-select-two antenna case. First, the measured packet-error-rate (PER) performance confirms that the eigenbeam scheme with the three-select-two antenna-selection scheme provides a slight degradation in the required carrier-to-noise power ratio (CNR) that is approximately 0.2 dB from the eigenbeam-only scheme with three transmit antennas but with significantly lower computational complexity. Second, to determine the impact of Doppler frequency, both 5 Hz and 20 Hz, we focus on the required CNR performance degradation under various transmission intervals between the channel sounding packet and the data packet. It is experimentally confirmed that the eigenbeam scheme with transmit antenna selection offers improved robustness to MIMO channel fluctuation compared with the eigenbeam-only scheme.   相似文献   

4.
Modern wireless communications require an efficient spectrum usage and high channel capacity and throughput. Multiple-input and multiple-output (MIMO), Linear equalizers, multi-user detection and multicarrier code-division multiple access (MC-CDMA) are possible solutions to achieve spectral efficiency, high channel capacity, eliminate multiple access interference (MAI), eliminate Inter symbol interference (ISI) and robustness against frequency selective fading. In this paper, we combine all these techniques and investigate BER performance. We propose a low complexity receiver structure for Single-input Multiple-output (SIMO) downlink MC-CDMA systems. It employs an interference cancellation scheme to suppress the interference caused by the multipath fading channel. Also, the proposed scheme is developed for MIMO MC-CDMA system. The performance analysis of Downlink MIMO MC-CDMA systems with V-BLAST over frequency selective fading channel is investigated under various number of transmit and receive antennas. The simulation results show proposed SIMO equalization with parallel interference cancellation scheme is effective in reducing the ISI and the MAI. It improves the performance significantly and the simulation results show that MIMO MC-CDMA with V-BLAST multi-user detection provides high data rate and the BER significant improvement.  相似文献   

5.
TCP performance enhancement in wireless access networks is an important ongoing area of research. It is known that the hostile nature of the wireless channel and the mobile nature of wireless users interact adversely with standard TCP congestion control mechanisms [1], causing a drastic reduction in throughput. This article surveys a selection of different approaches to managing TCP performance over wireless links, and presents the results of simulation and field trial results of a novel TCP performance enhancing proxy over diverse cellular radio access technologies based on the GSM, cdma2000, and UMTS standards. The proposed TRL TCP performance enhancing proxy has the advantages of being completely transparent to both TCP endpoints and tunable to different access technologies, and frequently achieves the maximum throughput available from any of the studied radio access technologies.  相似文献   

6.
Spatial multiplexing (SMX) multiple-input multiple-output (MIMO) systems are promising candidates to enhance the achievable throughput and the overall spectral efficiency in future wireless systems. Performance studies of these systems over different channel conditions assume simplified models for the channel phase distribution. This paper highlights the impact of the channel phase distribution assumption on the performance of SMX MIMO systems. The Nakagami-m and the \(\eta -\mu\) fading channels are considered in this study. In existing literature, performance studies of SMX MIMO systems over Nakagami-m fading channel assume uniform phase distribution. Though, it has been reported recently that the Nakagami-m channel phase distribution is not uniform. In this article, we show that the assumption of the channel phase distribution has a major impact on the performance of SMX MIMO systems. The obtained results demonstrate that the performance of SMX MIMO systems significantly varies with different channel phase distributions. Furthermore, it is shown that uniform assumption of channel phase distribution is incorrect and leads to erroneous conclusions. Detailed performance analysis for more accurate channel models are provided and results are sustained through Monte-Carlo simulations.  相似文献   

7.
Performance impact of interlayer dependence in infrastructure WLANs   总被引:1,自引:0,他引:1  
Widespread deployment of infrastructure WLANs has made Wi-Fi an integral part of today's Internet access technology. Despite its crucial role in affecting end-to-end performance, past research has focused on MAC protocol enhancement, analysis, and simulation-based performance evaluation without sufficient consideration for modeling inaccuracies stemming from interlayer dependencies, including physical layer diversity, that significantly impact performance. We take a fresh look at IEEE 802.11 WLANs and using experiment, simulation, and analysis demonstrate its surprisingly agile performance traits. Our findings are two-fold. First, contention-based MAC throughput degrades gracefully under congested conditions, enabled by physical layer channel diversity that reduces the effective level of MAC contention. In contrast, fairness degrades and jitter increases significantly at a critical offered load. This duality obviates the need for link layer flow control for throughput improvement. Second, TCP-over-WLAN achieves high throughput commensurate with that of wireline TCP under saturated conditions, challenging the widely held perception that TCP throughput fares poorly over WLANs when subject to heavy contention. We show that TCP-over-WLAN prowess is facilitated by the self-regulating actions of DCF and TCP feedback control that jointly drive the shared channel at an effective load of two to three wireless stations, even when the number of active stations is large. We show that the mitigating influence of TCP extends to unfairness and adverse impact of dynamic rate shifting under multiple access contention. We use experimentation and simulation in a complementary fashion, pointing out performance characteristics where they agree and differ.  相似文献   

8.
In this paper, we present a novel scalable video transmission strategy over multi-input multi-output (MIMO) wireless systems with time-varying channel capacity. It is a great challenge to simultaneously guarantee the QoS for video delivery and maximize the system throughput over time-varying MIMO channel. We demonstrate that, by making full use of estimated channel state information (CSI) through feedback, a cascade of adaptive operations can be designed to satisfy maximum throughput for scalable video over MIMO systems. These operations include power allocation based on water-filling (WF), adaptive channel selection (ACS), and novel throughput maximizing power reallocation (PR). The proposed ACS transmission scheme enables overall increase in data throughput among enhancement layers by adaptively launching base layer bit-stream to proper sub-channel. Then, after initial power allocation with WF and proper adaptive mode selection, we obtain the surplus power across enhancement layer sub-channels which can be reallocated to some sub-channels by the proposed PR scheme. With such power reallocation, certain enhancement layers will be able to reach new level of QAM modulation through PR so as to maximize the system data throughput. We present in this paper some detailed analysis on these adaptive operations. We also present some simulation results to demonstrate that maximum throughput video transmission over MIMO wireless systems indeed can be achieved based on scalable video coding (SVC) and a sequence of appropriately designed adaptive operations.  相似文献   

9.
Multiple-input multiple-output (MIMO) antenna systems employ spatial multiplexing to increase spectral efficiency or transmit diversity to improve link reliability. The performance of these signaling strategies is highly dependent on MIMO channel characteristics, which, in turn, depend on antenna height and spacing and richness of scattering. In practice, large antenna spacings are often required to achieve significant multiplexing or diversity gain. The use of dual-polarized antennas (polarization diversity) is a promising cost- and space-effective alternative, where two spatially separated uni-polarized antennas are replaced by a single antenna structure employing orthogonal polarizations. This paper investigates the performance of spatial multiplexing and transmit diversity (Alamouti (see IEEE J. Select. Areas Commun., vol.16, p.1451-58, Oct. 1998) scheme) in MIMO wireless systems employing dual-polarized antennas. In particular, we derive estimates for the uncoded average symbol error rate of spatial multiplexing and transmit diversity and identify channel conditions where the use of polarization diversity yields performance improvements. We show that while improvements in terms of symbol error rate of up to an order of magnitude are possible in the case of spatial multiplexing, the presence of polarization diversity generally incurs a performance loss for transmit diversity techniques. Finally, we provide simulation results to demonstrate that our estimates closely match the actual symbol error rates.  相似文献   

10.
无线通信系统的MIMO信道测量与建模   总被引:1,自引:0,他引:1  
在多径信道中,使用多天线的M IMO(多输入多输出)无线系统能够比单天线系统提供更高的信道容量,而信道测量与建模是决定通信性能的一个重要因素。文中对目前国际范围内现有的M IMO信道测量和建模进行了研究,并进行了归纳和分类,同时分析了M IMO信道测量和建模的方法,指出了目前信道测量和建模中存在的问题,并给出了一些针对M IMO信道测量系统设计的建议。  相似文献   

11.
A review of antennas and propagation for MIMO wireless communications   总被引:4,自引:0,他引:4  
Multiple-input-multiple-output (MIMO) wireless systems use multiple antenna elements at transmit and receive to offer improved capacity over single antenna topologies in multipath channels. In such systems, the antenna properties as well as the multipath channel characteristics play a key role in determining communication performance. This paper reviews recent research findings concerning antennas and propagation in MIMO systems. Issues considered include channel capacity computation, channel measurement and modeling approaches, and the impact of antenna element properties and array configuration on system performance. Throughout the discussion, outstanding research questions in these areas are highlighted.  相似文献   

12.
Improving TCP/IP Performance over Third-Generation Wireless Networks   总被引:2,自引:0,他引:2  
As third-generation (3G) wireless networks with high data rate get widely deployed, optimizing the transmission control protocol (TCP) performance over these networks would have a broad and significant impact on data application performance. In this paper, we make two main contributions. First, one of the biggest challenges in optimizing the TCP performance over the 3G wireless networks is adapting to the significant delay and rate variations over the wireless channel. We present window regulator algorithms that use the receiver window field in the acknowledgment (ACK) packets to convey the instantaneous wireless channel conditions to the TCP source and an ACK buffer to absorb the channel variations, thereby maximizing long-lived TCP performance. It improves the performance of TCP selective ACK (SACK) by up to 100 percent over a simple drop-tail policy, with small buffer sizes at the congested router. Second, we present a wireless channel and TCP-aware scheduling and buffer sharing algorithm that reduces the latency of short flows while still exploiting user diversity for a wide range of user and traffic mix.  相似文献   

13.
未来第5代移动通信系统(5G)中无线数据业务量的爆发性增长推动着研究人员发展新的颠覆性技术.作为5G的关键候选技术之一,大规模多入多出(MIMO)在基站使用远超激活终端数的天线,能增加一个数量级的频谱效率并大幅降低发射功率.首先介绍了大规模MIMO的系统模型和理论性能,其次分析和归纳了在信道测量与建模、信道信息获取、传输方法的研究成果,然后简述了实验和测试进展,最后讨论了未来研究方向.  相似文献   

14.
MIMO技术利用多根天线实现多发多收,能够在不增加传输带宽和发射功率的条件下,成倍地提高系统的数据速率;而预编码技术则可以利用接收端反馈回来的信道状态信息对信号进行预处理以改善信号的传输性能,从而达到消除干扰的目的,使得无线通信系统的可靠性得以提升。因此对MIMO系统预编码技术的研究,是解决如何提升无线通信系统性能的关键问题,具有重大的研究意义。  相似文献   

15.
Wireless link losses result in poor TCP throughput since losses are perceived as congestion by TCP, resulting in source throttling. In order to mitigate this effect, 3G wireless link designers have augmented their system with extensive local retransmission mechanisms. In addition, in order to increase throughput, intelligent channel state based scheduling have also been introduced. While these mechanisms have reduced the impact of losses on TCP throughput and improved the channel utilization, these gains have come at the expense of increased delay and rate variability. In this paper, we comprehensively evaluate the impact of variable rate and variable delay on long-lived TCP performance. We propose a model to explain and predict TCPs throughput over a link with variable rate and/or delay. We also propose a network-based solution called Ack Regulator that mitigates the effect of variable rate and/or delay without significantly increasing the round trip time, while improving TCP performance by up to 100%.  相似文献   

16.
In this paper, we focus on the throughput analysis, outage evaluation and optimized power allocation for Multiple-Input Multiple-Output (MIMO) pilot-based wireless systems subject to short-term constraints on the radiated power and equipped with a feedback-path for communicating back to the transmitter the imperfect MIMO channel estimates available at the receiver. The case of the ergodic throughput for Gaussian distributed input signals is analyzed, and the conditions for the (asymptotical) achievement of the Shannon capacity are pointed out. The main contributions of this work may be so summarized. First, we develop closed-form analytical expressions for the computation of the ergodic information throughput conveyed by the considered MIMO system for the case of ideal feedback link. Second, we present an iterative algorithm for the optimized power allocation over the transmit antennas that explicitly accounts for the imperfect MIMO channel estimates available at the receiver. Third, after relaxing the assumption of ideal feedback link, we test the sensitivity of the proposed power allocation algorithm on errors possibly introduced by the feedback channel, and then, we numerically evaluate the resulting throughput loss. Finally, we develop closed-form upper and lower bounds on the outage probability that are asymptotically tight.  相似文献   

17.
A number of wireless systems have recently adopted adaptive modulation (AM) schemes to improve its efficiency. In this letter, our aim is to study the impact Doppler spread and adaptive modulation has on transmission control protocol (TCP) throughput in Rayleigh fading channels. We consider a finite state Markov channel (FSMC) model, which is a useful model for analyzing radio channel with nonindependent fading. Furthermore, we use a Markov model for TCP evolution and evaluate the TCP performance by computer simulations. In our simulations we have compared the TCP Reno scheme with TCP Tahoe scheme. The results indicate that a large Doppler spread leads to lower TCP throughput due to more frequent transitions of channel states and modulation schemes which make it difficult for the TCP congestion control mechanism to accommodate the dynamic link characteristics.  相似文献   

18.
We investigate a wireless network architecture that utilizes Tomlinson Harashima Precoded Multiple Input Multiple Output (THP MIMO) technique for improved system capacity. We consider THP MIMO in a multi user scenario, together with a proposed smart scheduling technique and we explore the capacity performance through extensive capacity analysis considering varying SNR levels, varying number of users and number of transmit/receive antennas, under fading and shadowing, also considering errors in channel state information (CSI). We also evaluate the complexity of THP MIMO and present a low-complexity scheduling algorithm that employs Gram-Schmidt algorithm for incremental implementation of THP’s QR factorization. In the end, we identify the network and channel conditions under which THP MIMO can be preferred over classical conventional MIMO, and we conclude that for practical transceivers with up to four antennas, THP MIMO can provide significant capacity enhancement over conventional MIMO at lower complexity, performing slightly below the sum rate capacity bound. Another important advantage that is observed in this study is better immunity of THP MIMO to CSI errors, as compared to conventional MIMO.  相似文献   

19.
B3G空中接口技术分析--MIMO信道测量   总被引:1,自引:0,他引:1  
在多径信道中,使用多天线的MIMO无线系统能够比单天线系统提供更高的信道容量,而信道测量是决定通信性能的一个重要因素。对目前国际范围内现有的MIMO信道测量进行了研究,并做了归纳和分类。此外,对MIMO信道测量方法进行了分析,并给出了一些针对MIMO信道测量系统设计的建议,为B3G空中接口技术研究提供了技术支持。  相似文献   

20.
This paper explores the use of rate adaptation in cellular networks to maximize throughput of long-lived TCP sessions. We focus on the problem of maximizing the throughput of TCP connections and propose a joint optimization of MAC and physical layer parameters with respect to TCP sending rate. In particular, we propose a simple TCP-aware channel scheduler that adapts the wireless channel rate to changes in the TCP sending rate and explore its performance for both single and multiple concurrent sessions. In the case of a single TCP session, we develop a fluid model of its steady-state behavior in such a system that adapts between two channel rates. Our results indicate that a two-rate scheme improves TCP throughput by 15% to 20% over a system that does not exploit rate adaptation and that little additional benefit accrues from the addition of a third channel rate. Finally, we extend the framework to scenarios where bandwidth is shared by multiple TCP sessions. We propose two channel allocation algorithms and explore their performance through simulation. Our results indicate that TCP throughput is relatively insensitive to either channel allocation algorithm and adaptive rate variation is the dominant factor in performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号