首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
In this article, higher order theory for sandwich beam with composite faces and viscoelastic core is achieved by considering independent transverse displacements on two faces and linear variations through the depth of the beam core. In addition, the effects of Young modulus, rotational inertia and core kinetic energy are considered to modify the “Mead & Markus” theory that is used frequently for sandwich beam. These assumptions have not been considered together in previous articles. A finite element code is developed for structural response analysis of the free and forced vibration. The obtained results are compared with the corresponding results of previous researches. The effects of impressive parameters including fiber angle, thickness of faces and core thickness on the loss factors and natural frequencies of the beam are examined. Frequency response of the beam for two cases, constant and frequency dependent core shear modulus are obtained. Finally, time response of the beam is presented based on the Newmark method. Obtained results show that, when the core is soft or hard, “Mead & Markus” theory cannot accurately predict the frequency responses of the system in comparison with the presented theory in this paper; whereas for moderately hard core, both methods lead to the same results. In addition, when the beam is unsymmetrical about its neutral axis, i.e. one face sheet is weaker than the other face sheet, the inaccuracy of the “Mead & Markus” theory increases, even at low frequencies.  相似文献   

2.
This paper deals with the vibration analysis of a three layered composite beam with a viscoelastic core. First, the equations of motion that govern the free vibrations of the sandwich beam are derived by applying Hamilton’s principle. Then, these equations are solved by using differential transform method (DTM) in the frequency domain. The variation of modal loss factor with system parameters is evaluated and presented graphically. Also, the results obtained with DTM are checked against the findings of previous studies and a good agreement is observed. It is the first time that DTM is used for the eigenvalue analysis of a sandwich structure.  相似文献   

3.
The design efficiency of sandwich panels is often associated with the value of fundamental frequency. This paper investigates the free vibrations of rectangular sandwich plates having two adjacent edges fully clamped and the remaining two edges free (CFCF). The vibration analysis is performed by applying Hamilton’s principle in conjunction with the first-order shear deformation theory. The analytical solution determining the fundamental frequency of the plate is obtained using the generalised Galerkin method and verified by comparison with the results of finite element modal analysis. The approach developed in the paper and equations obtained are applied to the design of sandwich plates having composite facings and orthotropic core. Design charts representing the effects of the thickness of the facings and core on the mass of composite sandwich panel for a given value of the fundamental frequency are obtained.  相似文献   

4.
Abstract

Most previous studies of viscoelastic sandwich plates were based on the assumption that damping was only resulting from shear deformation in the viscoelastic core. However, extensive and compressive deformations in the viscoelastic core should also be considered especially for sandwich plates with moderately thick viscoelastic core. This paper presents a finite element formulation for vibration and damping analysis of sandwich plates with moderately thick viscoelastic core based on a mixed layerwise theory. The face layers satisfy the Kirchhoff theory while the viscoelastic core meets a general high-order deformation theory. The viscoelastic core is modeled as a quasi-three-dimensional solid where other types of deformation such as longitudinal extension and transverse compression are also considered. To better describe the distribution of the displacement fields, auxiliary points located across the depth of the sandwich plate are introduced. And based on the auxiliary points, the longitudinal and transverse displacements of the viscoelastic core are interpolated independently by Lagrange interpolation functions. Quadrilateral finite elements are developed and dynamic equations are derived by Hamilton’s principle in the variation form. Allowing for the frequency-dependent characteristics of the viscoelastic material, an iterative procedure is introduced to solve the nonlinear eigenvalue problem. The comparison with results in the open literature validates the remarkable accuracy of the present model for sandwich plates with moderately thick viscoelastic core, and demonstrates the importance of the higher-order variation of the transverse displacement along the thickness of the viscoelastic core for the improvement of the analysis accuracy. Moreover, the influence of the thickness and stiffness ratios of the viscoelastic core to the face layers on the damping characteristics of the viscoelastic sandwich plate is discussed.  相似文献   

5.
This work considers transient vibration and sound radiation from an impact‐excited rectangular plate with viscoelastic boundary supports. The approach used is based on the modal strain energy (MSE) method. Vibration of the plate is approximated by a double infinite series in the spatial co‐ordinates. Each term of the series is constructed with vibration modes of beams having the same boundary conditions as the plate, multiplied by a time‐dependent function. Modal loss factor of each mode is obtained by the MSE method. The sound radiation pressure in the time and frequency domain is obtained by numerical integration of the Rayleigh integral. Effects of the viscoelastic boundary supports on the vibration response and the radiated sound pressure of the vibrating plate are also discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The natural frequencies and modal loss factors of the three-layered annular plate with a viscoelastic core layer and two polar orthotropic laminated face layers are considered. The discrete layer annular finite element is employed to derive the equations of motion for the three-layered annular plate. The viscoelastic material in the central layer is assumed to be incompressible, and the extensional and shear moduli are described by the complex quantities. Complex eigenvalued problems are then solved, and the frequencies and modal loss factors of the composite plate are extracted. The results of the symmetric and non-symmetric composite annular plates are both presented. The effects of material properties, radius to thickness ratio, stacking sequences and thickness of face layers, and thickness of the viscoelastic core layer are discussed.  相似文献   

8.
Several types of singular stress fields may appear at the corner where an interface between two bonded materials intersects a traction-free edge depending on the material combinations. Since the failure of the multi-layer systems often originates at the free-edge corner, the analysis of the edge interface crack is the most fundamental to simulate crack extension. In this study, the stress intensity factors for an edge interfacial crack in a bi-material bonded strip subjected to longitudinal tensile stress are evaluated for various combinations of materials using the finite element method. Then, the stress intensity factors are calculated systematically with varying the relative crack sizes from shallow to very deep cracks. Finally, the variations of stress intensity factors of a bi-material bonded strip are discussed with varying the relative crack size and material combinations. This investigation may contribute to a better understanding of the initiation and propagation of the interfacial cracks.  相似文献   

9.
根据板的动力平衡方程和压缩波前附加约束方程,基于双特征参数法和应力波理论,求解了三边简支一边固支矩形薄板在面内轴向冲击载荷作用下动力屈曲位移的解析解。揭示了矩形薄板动力屈曲过程中板的厚宽比、屈曲模态、冲击载荷大小和临界屈曲长度之间的关系。计算结果表明,由于横向惯性效应的存在,动力屈曲的临界载荷要比静力屈曲的大得多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号