首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
The impact of inaccurate channel state information at the transmitter for a variable rate variable power multilevel quadrature amplitude modulation (VRVP-MQAM) system over a Rayleigh flat-fading channel is investigated. A system model is proposed with rate and power adaptation based on the estimates of instantaneous signal-to-noise ratio (SNR) and bit error rate (BER). A pilot symbol assisted modulation scheme is used for SNR estimation. The BER estimator is derived using a maximum a posteriori approach and a simplified closed-form solution is obtained as a function of only the second order statistical characterization of the channel state imperfection. Based on the proposed system model, rate and power adaptation is derived for the optimization of spectral efficiency subject to an average power constraint and an instantaneous BER requirement. The performance of the VRVP-MQAM system under imperfect channel state information (CSI) is evaluated. We show that the proposed VRVP-MQAM system that employs optimal solutions based on the statistical characterization of CSI imperfection achieves a higher spectral efficiency as compared to an ideal CSI assumption based method.  相似文献   

2.
Degrees of freedom in adaptive modulation: a unified view   总被引:2,自引:0,他引:2  
We examine adaptive modulation schemes for flat-fading channels where the data rate, transmit power, and instantaneous BER are varied to maximize spectral efficiency, subject to an average power and BER constraint. Both continuous-rate and discrete-rate adaptation are considered, as well as average and instantaneous BER constraints. We find the general form of power, BER and data rate adaptation that maximizes spectral efficiency for a large class of modulation techniques and fading distributions. The optimal adaptation of these parameters is to increase the power and data rate and decrease the BER as the channel quality improves. Surprisingly, little spectral efficiency is lost when the power or rate is constrained to be constant. Hence, the spectral efficiency of adaptive modulation is relatively insensitive to which degrees of freedom are adapted  相似文献   

3.
We propose a low-complexity closed-loop spatial multiplexing method with limited feedback over multi-input-multi-output (MIMO) fading channels. The transmit adaptation is simply performed by selecting transmit antennas (or substreams) by comparing their signal-to-noise ratios to a given threshold with a fixed nonadaptive constellation and fixed transmit power per substream. We analyze the performance of the proposed system by deriving closed-form expressions for spectral efficiency, average transmit power, and bit error rate (BER). Depending on practical system design constraints, the threshold is chosen to maximize the spectral efficiency (or minimize the average BER) subject to average transmit power and average BER (or spectral efficiency) constraints, respectively. We present numerical and Monte Carlo simulation results that validate our analysis. Compared to open-loop spatial multiplexing and other approaches that select the best antenna subset in spatial multiplexing, the numerical results illustrate that the proposed technique obtains significant power gains for the same BER and spectral efficiency. We also provide numerical results that show improvement over rate-adaptive orthogonal space-time block coding, which requires highly complex constellation adaptation. We analyze the impact of feedback delay using analytical and Monte Carlo approaches. The proposed approach is arguably the simplest possible adaptive spatial multiplexing system from an implementation point of view. However, our approach and analysis can be extended to other systems using multiple constellations and power levels.  相似文献   

4.
Transmit power adaptation for multiuser OFDM systems   总被引:47,自引:0,他引:47  
In this paper, we develop a transmit power adaptation method that maximizes the total data rate of multiuser orthogonal frequency division multiplexing (OFDM) systems in a downlink transmission. We generally formulate the data rate maximization problem by allowing that a subcarrier could be shared by multiple users. The transmit power adaptation scheme is derived by solving the maximization problem via two steps: subcarrier assignment for users and power allocation for subcarriers. We have found that the data rate of a multiuser OFDM system is maximized when each subcarrier is assigned to only one user with the best channel gain for that subcarrier and the transmit power is distributed over the subcarriers by the water-filling policy. In order to reduce the computational complexity in calculating water-filling level in the proposed transmit power adaptation method, we also propose a simple method where users with the best channel gain for each subcarrier are selected and then the transmit power is equally distributed among the subcarriers. Results show that the total data rate for the proposed transmit power adaptation methods significantly increases with the number of users owing to the multiuser diversity effects and is greater than that for the conventional frequency-division multiple access (FDMA)-like transmit power adaptation schemes. Furthermore, we have found that the total data rate of the multiuser OFDM system with the proposed transmit power adaptation methods becomes even higher than the capacity of the AWGN channel when the number of users is large enough.  相似文献   

5.
Adaptive Modulation over Nakagami Fading Channels   总被引:29,自引:4,他引:25  
We first study the capacity of Nakagami multipath fading (NMF) channels with an average power constraint for three power and rate adaptation policies. We obtain closed-form solutions for NMF channel capacity for each power and rate adaptation strategy. Results show that rate adaptation is the key to increasing link spectral efficiency. We then analyze the performance of practical constant-power variable-rate M-QAM schemes over NMF channels. We obtain closed-form expressions for the outage probability, spectral efficiency and average bit-error-rate (BER) assuming perfect channel estimation and negligible time delay between channel estimation and signal set adaptation. We also analyze the impact of time delay on the BER of adaptive M-QAM.  相似文献   

6.
Variable-rate variable-power MQAM for fading channels   总被引:9,自引:0,他引:9  
We propose a variable-rate and variable-power MQAM modulation scheme for high-speed data transmission over fading channels. We first review results for the Shannon capacity of fading channels with channel side information, where capacity is achieved using adaptive transmission techniques. We then derive the spectral efficiency of our proposed modulation. We show that there is a constant power gap between the spectral efficiency of our proposed technique and the channel capacity, and this gap is a simple function of the required bit-error rate (BER). In addition, using just five or six different signal constellations, we achieve within 1-2 dB of the maximum efficiency using unrestricted constellation sets. We compute the rate at which the transmitter needs to update its power and rate as a function of the channel Doppler frequency for these constellation sets. We also obtain the exact efficiency loss for smaller constellation sets, which may be required if the transmitter adaptation rate is constrained by hardware limitations. Our modulation scheme exhibits a 5-10-dB power gain relative to variable-power fixed-rate transmission, and up to 20 dB of gain relative to nonadaptive transmission. We also determine the effect of channel estimation error and delay on the BER performance of our adaptive scheme. We conclude with a discussion of coding techniques and the relationship between our proposed modulation and Shannon capacity  相似文献   

7.
In this paper, closed-form expressions for capacities per unit bandwidth for fading channels with impairments due to Branch Correlation are derived for optimal power and rate adaptation, constant transmit power, channel inversion with fixed rate, and truncated channel inversion policies for maximal ratio combining diversity reception case. Closed-form expressions for system spectrum efficiency when employing different adaptation policies are derived. Analytical results show accurately that optimal power and rate adaptation policy provides the highest capacity over other adaptation policies. In the case of errors due to branch correlation, optimal power and rate adaptation policy provides the best results. All adaptation policies suffer no improvement in channel capacity as the branch correlation is increased. This fact is verified using various plots for different policies. With increase in branch correlation, capacity gains are significantly larger for optimal power and rate adaptation policy as compared to the other policies. The outage probability for branch correlation is also derived and analyzed using plots for the same.  相似文献   

8.
The Shannon capacity of a fading channel under an average-power constraint with channel side information at the transmitter and receiver is only negligibly larger than the capacity of the same channel when constant-power transmission is employed. However, power adaptation has been shown to be quite useful in practical systems, where it has been conjectured that it allows for compensation of the effect of rate quantization. Here, an average bit-error probability constraint is employed instead of the conventional instantaneous bit-error probability constraint. When the set of rates available to the transmitter is unrestricted in practical systems, necessary conditions for jointly optimal power and rate allocation are derived and used to demonstrate that power adaptation is of limited utility. However, when the rates available to the transmitter are restricted to the nonnegative integers for the example of uncoded quadrature amplitude modulation over frequency-nonselective Rayleigh fading channels, a 0.5-0.75 dB loss in power efficiency is incurred when employing only a single power level for each constellation, and a 0.5-bits/symbol loss in rate is incurred when constant power transmission is employed.  相似文献   

9.
We study the Shannon capacity of adaptive transmission techniques in conjunction with diversity-combining. This capacity provides an upper bound on spectral efficiency using these techniques. We obtain closed-form solutions for the Rayleigh fading channel capacity under three adaptive policies: optimal power and rate adaptation, constant power with optimal rate adaptation, and channel inversion with fixed rate. Optimal power and rate adaptation yields a small increase in capacity over just rate adaptation, and this increase diminishes as the average received carrier-to-noise ratio (CNR) or the number of diversity branches increases. Channel inversion suffers the largest capacity penalty relative to the optimal technique, however, the penalty diminishes with increased diversity. Although diversity yields large capacity gains for all the techniques, the gain is most pronounced with channel inversion. For example, the capacity using channel inversion with two-branch diversity exceeds that of a single-branch system using optimal rate and power adaptation. Since channel inversion is the least complex scheme to implement, there is a tradeoff between complexity and capacity for the various adaptation methods and diversity-combining techniques  相似文献   

10.
Technological advances in low-power digital signal processors, radio frequency (RF) circuits, and micromechanical systems (MEMS) have led to the emergence of wirelessly interconnected sensor nodes. The new technological possibilities emerge when a large number of tiny intelligent wireless sensor nodes are combined. The sensor nodes are typically battery operated and, therefore, energy constrained. Hence, energy conservation is one of the foremost priorities in design of wireless sensor networks (WSNs) protocols. Limited power resources and bursty nature of the wireless channel are the biggest challenges in WSNs. Link adaptation techniques improve the link quality by adjusting medium access control (MAC) parameters such as frame size, data rate, and sleep time, thereby improving energy efficiency. In This work, our study emphasizes optimizing WSNs by building a reliable and adaptive MAC without compromising fairness and performance. Here, we present link adaptation techniques at MAC layer to enhance energy efficiency of the sensor nodes. The proposed MAC uses a variable frame size instead of a fixed frame size for transmitting data. In order to get accurate estimations, as well as reducing the computation complexity, we utilize the extended Kalman filter to predict the optimal frame size for improving energy efficiency and goodput, while minimizing the sensor memory requirement. Next, we designed and verified different network models to evaluate and analyze the proposed link adaptation schemes. The correctness of the proposed theoretical models have been verified by conducting extensive simulations. We also prototype the proposed scheme with the MAC protocol on Berkeley Motes. Both prototype and simulation results show that the proposed algorithms improve the energy efficiency by up to 15%.  相似文献   

11.
802.11 networks provide multi-rate capability to offer rate adaptability against the time-varying wireless channel. However, how to switch between the available rates has not been standardized. Existing rate adaptation (RA) solutions assume common transmission power and can only passively tune link rate to match the inferred channel condition via different methods. This simple attitude is neither flexible in traffic-aware link rate selection nor effective in energy conservation and spatial reuse since transmission power may be either too low to sustain the link rate or too high that results in unnecessary energy consumption and worse spatial reuse. Different from existing solutions, we think that link rate switch should be driven by traffic load and power control should be considered with rate adaptation together to conserve energy and increase spatial reuse. To this end, we propose a traffic-aware link rate adaptation scheme (TARA) via power control for multi-rate 802.11 networks. Its basic idea consists of a two-step procedure. Firstly, traffic load is sensed in the MAC layer to decide whether link rate should be increased or decreased for the next transmission. Afterwards, power control is carried out in the PHY layer to guarantee that the new link rate can be sustained while minimizing the transmission power. Extensive simulation results show that TARA outperforms typical existing schemes in terms of energy efficiency and throughput.  相似文献   

12.
认知无线电中基于SA-MIMO-OFDM的动态频谱共享方案   总被引:2,自引:0,他引:2  
该文提出一种结合频谱自适应(Spectrum Adaptation,SA)与MIMO-OFDM技术的动态频谱共享方案。该方案基于功率门限模型实现非授权信号的自适应频谱成型,并给出了一种简单的动态功率分配算法以最大化比特率。仿真结果表明,该方案能够克服干扰温度模型的局部干扰问题,使用MIMO技术可进一步提高系统性能,通过动态功率分配算法可降低计算复杂性并提高频谱利用率。  相似文献   

13.
In this paper, the potential of load adaptation for enhanced backoff efficiency in RF power amplifiers (PAs) has been investigated through a 0.13-mum silicon-on-insulator (SOI) CMOS fabrication technology. The RF power performance of the adopted SOI CMOS process has been preliminarily characterized by on-wafer load-pull measurements on a custom unit power transistor. A 2.4-GHz 24-dBm 2-V SOI CMOS PA with fully integrated reconfigurable output matching network has then been designed and experimentally characterized. A significant efficiency improvement of up to 34% has been achieved through load adaptation, peak efficiency being as high as 65%. Linear operation has also been demonstrated under two-tone excitation, as a 16-dBm output power has been attained while complying with a - 40-dBc third-order intermodulation distortion specification.  相似文献   

14.
Joint optimization of signal-to-noise ratio (SNR) target and transmission rate adaptation is examined for multilevel quadrature amplitude modulation (MQAM) over flat-fading channels, to maximize the spectral efficiency subject to an average transmit power constraint. We propose an adaptive transmission scheme in which the outer-loop SNR target and data rate are adapted to bit-error rate (BER), where total or truncated channel-inversion strategies are exploited for the (fast) inner-loop power control. We obtain the optimal solutions for both continuous and discrete rate adaptation, and consider cases where diversity combining is performed in the receiver. We show that by using this BER-based adaptive scheme, spectral efficiency can be improved compared with optimal SNR-based variable-rate variable-power MQAM. We also show that for continuous rate adaptation, the optimal SNR target monotonically increases with BER, while it descends within a BER range with constant rate  相似文献   

15.
The study of channel capacity evaluation in conjunction with maximal ratio diversity-combining (MRC) is presented in this paper. Analysis of the capacity in correlative Nakagami-m fading channels is observed. Using the proposed fading model, the power and rate adaptation, constant transmit power, channel inversion with fixed rate and truncated channel inversion adaptation policies are analyzed. Our results show that the power and rate adaptation policy, being only slightly higher than capacity of constant transmit power policy, provides the highest capacity over the other adaptation policies. The results also show that truncated channel inversion adaptation policy is better alternative compared to complete channel inversion policy for all values of fading severity, diversity order and correlation coefficient.  相似文献   

16.
This paper presents a new transmission scheme for a decode and forward (DF) relay network using continuous power adaptation while independent average power constraints are provisioned for each node. To have analytical insight, the achievable throughputs are analysed using continuous adaptation of the rates and the powers. As shown by numerical evaluations, a considerable outperformance is seen by continuous power adaptation compared to the case where constant powers are utilised. Also for practical systems, a new throughput maximised transmission scheme is developed using discrete rate adaptation (adaptive modulation and coding) and continuous transmission power adaptation. First a 2-hop relay network is considered and then the scheme is extended for an N-hop network. Numerical evaluations show the efficiency of the designed schemes.  相似文献   

17.
The spectral efficiency results for different adaptive transmission schemes over correlated diversity branches with unequal average signal to noise ratio (SNR) obtained so far in literature are not applicable for Nakagami-0.5 fading channels. In this paper, we investigate the effect of fade correlation and level of imbalance in the branch average received SNR on the spectral efficiency of Nakagami-0.5 fading channels in conjunction with dual-branch selection combining (SC). This paper derived the expressions for the spectral efficiency over correlated Nakagami-0.5 fading channels with unequal average received SNR. This spectral efficiency is evaluated under different adaptive transmission schemes using dual-branch SC diversity scheme. The corresponding expressions for Nakagami-0.5 fading are considered to be the expressions under worst fading conditions. Finally, numerical results are provided to illustrate the spectral efficiency degradation due to channel correlation and unequal average received SNR between the different combined branches under different adaptive transmission schemes. It has been observed that optimal simultaneous power and rate adaptation (OPRA) scheme provides improved spectral efficiency as compared to truncated channel inversion with fixed rate (TIFR) and optimal rate adaptation with constant transmit power (ORA) schemes under worst case fading scenario. It is very interesting to observe that TIFR scheme is always a better choice over ORA scheme under correlated Nakagami-0.5 fading channels with unequal average received SNR.  相似文献   

18.
In this paper, closed-form expressions for the capacities per unit bandwidth (spectrum efficiency) of Weibull fading channels are derived and plotted for (a) Switch and Stay Combining diversity case and (b) no diversity case for adaptation policies like: (i) Optimal Power and Rate Adaptation policy, (ii) Optimal Rate Adaptation with constant transmit power policy, (iii) Channel Inversion with Fixed Rate policy, and (iv) Truncated Channel Inversion policy. In addition, spectrum efficiency expressions for asymptotic approximations, upper bounds, approximations for low and high SNR cases are derived for the cases with and without diversity. The probability density function of capacity, and the complementary cumulative distribution function of capacity are derived and plotted from the moment generating function for the cases with and without diversity. Optimal power and rate adaptation policy provides the highest capacity and optimal rate adaptation with constant transmit power policy provides the highest capacity penalty over other policies for the no diversity and SSC diversity cases. Numerical results for spectrum efficiency are plotted for all adaptation policies with and without diversity.  相似文献   

19.
Combined power and rate adaptation for wireless cellular systems   总被引:3,自引:0,他引:3  
We extend the throughput optimization technique of Qiu and Chawla (1999) for adaptive modulation, to combine power and rate adaptation in wireless cellular systems. We develop new combined power and rate control algorithms for wireless multimedia systems, in which the transmitted powers and rates of different media users are adapted based on the signal-to-interference power ratio. Using simulations, we show that with appropriately chosen power and rate limits, our proposed combined power and rate control algorithms can achieve a higher throughput when compared to previously proposed algorithms with power control only.  相似文献   

20.
In this paper, closed-form expressions for the capacities per unit bandwidth for generalized Rician fading channels are derived for power and rate adaptation, constant transmit power, channel inversion with fixed rate, and truncated channel inversion adaptation policies. The closed-form solutions are derived for the single antenna reception (without diversity combining) and maximal-ratio combining (MRC) diversity cases. Truncated channel inversion adaptation policy is the best policy for the single antenna reception case, while the channel inversion with fixed rate policy is the best policy for the MRC diversity case. Constant transmit power policy provides the lowest spectral efficiency as compared to the other policies with and without diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号